A class of torsion-free abelian groups characterized by the ranks of their socles
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 319-327.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Butler groups formed by factoring a completely decomposable group by a rank one group have been studied extensively. We call such groups, bracket groups. We study bracket modules over integral domains. In particular, we are interested in when any bracket $R$-module is $R$ tensor a bracket group.
Classification : 13A15, 13B22, 13C13, 13F05, 13G05, 20K15
Keywords: Dedekind domain
@article{CMJ_2002__52_2_a6,
     author = {Albrecht, Ulrich and Giovannitti, Tony and Goeters, Pat},
     title = {A class of torsion-free abelian groups characterized by the ranks of their socles},
     journal = {Czechoslovak Mathematical Journal},
     pages = {319--327},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {2002},
     mrnumber = {1905438},
     zbl = {1013.13007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002__52_2_a6/}
}
TY  - JOUR
AU  - Albrecht, Ulrich
AU  - Giovannitti, Tony
AU  - Goeters, Pat
TI  - A class of torsion-free abelian groups characterized by the ranks of their socles
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 319
EP  - 327
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002__52_2_a6/
LA  - en
ID  - CMJ_2002__52_2_a6
ER  - 
%0 Journal Article
%A Albrecht, Ulrich
%A Giovannitti, Tony
%A Goeters, Pat
%T A class of torsion-free abelian groups characterized by the ranks of their socles
%J Czechoslovak Mathematical Journal
%D 2002
%P 319-327
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2002__52_2_a6/
%G en
%F CMJ_2002__52_2_a6
Albrecht, Ulrich; Giovannitti, Tony; Goeters, Pat. A class of torsion-free abelian groups characterized by the ranks of their socles. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 319-327. http://geodesic.mathdoc.fr/item/CMJ_2002__52_2_a6/