The monotone convergence theorem for multidimensional abstract Kurzweil vector integrals
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 429-437.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove two versions of the Monotone Convergence Theorem for the vector integral of Kurzweil, $\int _R{\mathrm d}\alpha (t) f(t)$, where $R$ is a compact interval of $\mathbb{R}^n$, $\alpha $ and $f$ are functions with values on $L(Z,W)$ and $Z$ respectively, and $Z$ and $W$ are monotone ordered normed spaces. Analogous results can be obtained for the Kurzweil vector integral, $\int _R\alpha (t)\mathrm{d}f(t)$, as well as to unbounded intervals $R$.
Classification : 26A39, 26A42, 28B05
Keywords: Monotone Convergence Theorem; Kurzweil vector integral; ordered normed spaces
@article{CMJ_2002__52_2_a17,
     author = {Federson, M\'arcia},
     title = {The monotone convergence theorem for multidimensional abstract {Kurzweil} vector integrals},
     journal = {Czechoslovak Mathematical Journal},
     pages = {429--437},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {2002},
     mrnumber = {1905449},
     zbl = {1022.28003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002__52_2_a17/}
}
TY  - JOUR
AU  - Federson, Márcia
TI  - The monotone convergence theorem for multidimensional abstract Kurzweil vector integrals
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 429
EP  - 437
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002__52_2_a17/
LA  - en
ID  - CMJ_2002__52_2_a17
ER  - 
%0 Journal Article
%A Federson, Márcia
%T The monotone convergence theorem for multidimensional abstract Kurzweil vector integrals
%J Czechoslovak Mathematical Journal
%D 2002
%P 429-437
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2002__52_2_a17/
%G en
%F CMJ_2002__52_2_a17
Federson, Márcia. The monotone convergence theorem for multidimensional abstract Kurzweil vector integrals. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 429-437. http://geodesic.mathdoc.fr/item/CMJ_2002__52_2_a17/