The monotone convergence theorem for multidimensional abstract Kurzweil vector integrals
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 429-437
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We prove two versions of the Monotone Convergence Theorem for the vector integral of Kurzweil, $\int _R{\mathrm d}\alpha (t) f(t)$, where $R$ is a compact interval of $\mathbb{R}^n$, $\alpha $ and $f$ are functions with values on $L(Z,W)$ and $Z$ respectively, and $Z$ and $W$ are monotone ordered normed spaces. Analogous results can be obtained for the Kurzweil vector integral, $\int _R\alpha (t)\mathrm{d}f(t)$, as well as to unbounded intervals $R$.
Classification :
26A39, 26A42, 28B05
Keywords: Monotone Convergence Theorem; Kurzweil vector integral; ordered normed spaces
Keywords: Monotone Convergence Theorem; Kurzweil vector integral; ordered normed spaces
@article{CMJ_2002__52_2_a17,
author = {Federson, M\'arcia},
title = {The monotone convergence theorem for multidimensional abstract {Kurzweil} vector integrals},
journal = {Czechoslovak Mathematical Journal},
pages = {429--437},
publisher = {mathdoc},
volume = {52},
number = {2},
year = {2002},
mrnumber = {1905449},
zbl = {1022.28003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002__52_2_a17/}
}
TY - JOUR AU - Federson, Márcia TI - The monotone convergence theorem for multidimensional abstract Kurzweil vector integrals JO - Czechoslovak Mathematical Journal PY - 2002 SP - 429 EP - 437 VL - 52 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_2002__52_2_a17/ LA - en ID - CMJ_2002__52_2_a17 ER -
Federson, Márcia. The monotone convergence theorem for multidimensional abstract Kurzweil vector integrals. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 429-437. http://geodesic.mathdoc.fr/item/CMJ_2002__52_2_a17/