A constructive integral equivalent to the integral of Kurzweil
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 365-367.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We slightly modify the definition of the Kurzweil integral and prove that it still gives the same integral.
Classification : 26A39, 26B99, 26E20, 46G10
Keywords: Kurzweil integral; generalized Riemann integral
@article{CMJ_2002__52_2_a11,
     author = {Federson, M.},
     title = {A constructive integral equivalent to the integral of {Kurzweil}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {365--367},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {2002},
     mrnumber = {1905443},
     zbl = {1011.26008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002__52_2_a11/}
}
TY  - JOUR
AU  - Federson, M.
TI  - A constructive integral equivalent to the integral of Kurzweil
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 365
EP  - 367
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002__52_2_a11/
LA  - en
ID  - CMJ_2002__52_2_a11
ER  - 
%0 Journal Article
%A Federson, M.
%T A constructive integral equivalent to the integral of Kurzweil
%J Czechoslovak Mathematical Journal
%D 2002
%P 365-367
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2002__52_2_a11/
%G en
%F CMJ_2002__52_2_a11
Federson, M. A constructive integral equivalent to the integral of Kurzweil. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 365-367. http://geodesic.mathdoc.fr/item/CMJ_2002__52_2_a11/