A Borel extension approach to weakly compact operators on $C_0(T)$
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 97-115.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $X$ be a quasicomplete locally convex Hausdorff space. Let $T$ be a locally compact Hausdorff space and let $C_0(T) = \lbrace f\: T \rightarrow I$, $f$ is continuous and vanishes at infinity$\rbrace $ be endowed with the supremum norm. Starting with the Borel extension theorem for $X$-valued $\sigma $-additive Baire measures on $T$, an alternative proof is given to obtain all the characterizations given in [13] for a continuous linear map $u\: C_0(T) \rightarrow X$ to be weakly compact.
Classification : 28B05, 46G10, 47B07, 47B38
@article{CMJ_2002__52_1_a9,
     author = {Panchapagesan, T. V.},
     title = {A {Borel} extension approach to weakly compact operators on $C_0(T)$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {97--115},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2002},
     mrnumber = {1885460},
     zbl = {0996.47041},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002__52_1_a9/}
}
TY  - JOUR
AU  - Panchapagesan, T. V.
TI  - A Borel extension approach to weakly compact operators on $C_0(T)$
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 97
EP  - 115
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002__52_1_a9/
LA  - en
ID  - CMJ_2002__52_1_a9
ER  - 
%0 Journal Article
%A Panchapagesan, T. V.
%T A Borel extension approach to weakly compact operators on $C_0(T)$
%J Czechoslovak Mathematical Journal
%D 2002
%P 97-115
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2002__52_1_a9/
%G en
%F CMJ_2002__52_1_a9
Panchapagesan, T. V. A Borel extension approach to weakly compact operators on $C_0(T)$. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 97-115. http://geodesic.mathdoc.fr/item/CMJ_2002__52_1_a9/