Two extension theorems. Modular functions on complemented lattices
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 55-74.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove an extension theorem for modular functions on arbitrary lattices and an extension theorem for measures on orthomodular lattices. The first is used to obtain a representation of modular vector-valued functions defined on complemented lattices by measures on Boolean algebras. With the aid of this representation theorem we transfer control measure theorems, Vitali-Hahn-Saks and Nikodým theorems and the Liapunoff theorem about the range of measures to the setting of modular functions on complemented lattices.
Classification : 06B30, 06C15, 28E99
Keywords: complemented lattices; orthomodular lattices; exhaustive modular functions; measures; extension; Vitali-Hahn-Saks theorem; Nikodým theorems; Liapunoff theorem
@article{CMJ_2002__52_1_a6,
     author = {Weber, Hans},
     title = {Two extension theorems. {Modular} functions on complemented lattices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {55--74},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2002},
     mrnumber = {1885457},
     zbl = {0998.06006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002__52_1_a6/}
}
TY  - JOUR
AU  - Weber, Hans
TI  - Two extension theorems. Modular functions on complemented lattices
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 55
EP  - 74
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002__52_1_a6/
LA  - en
ID  - CMJ_2002__52_1_a6
ER  - 
%0 Journal Article
%A Weber, Hans
%T Two extension theorems. Modular functions on complemented lattices
%J Czechoslovak Mathematical Journal
%D 2002
%P 55-74
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2002__52_1_a6/
%G en
%F CMJ_2002__52_1_a6
Weber, Hans. Two extension theorems. Modular functions on complemented lattices. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 55-74. http://geodesic.mathdoc.fr/item/CMJ_2002__52_1_a6/