Weak congruences of an algebra with the CEP and the WCIP
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 117-127.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Here we consider the weak congruence lattice $C_{W}(A)$ of an algebra $A$ with the congruence extension property (the CEP for short) and the weak congruence intersection property (briefly the WCIP). In the first section we give necessary and sufficient conditions for the semimodularity of that lattice. In the second part we characterize algebras whose weak congruences form complemented lattices.
Classification : 06C10, 06C15, 08A30
Keywords: weak congruence; CEP; WCIP; semimodular lattice; complemented lattice
@article{CMJ_2002__52_1_a10,
     author = {Walendziak, Andrzej},
     title = {Weak congruences of an algebra with the {CEP} and the {WCIP}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {117--127},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2002},
     mrnumber = {1885461},
     zbl = {0998.08001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002__52_1_a10/}
}
TY  - JOUR
AU  - Walendziak, Andrzej
TI  - Weak congruences of an algebra with the CEP and the WCIP
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 117
EP  - 127
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002__52_1_a10/
LA  - en
ID  - CMJ_2002__52_1_a10
ER  - 
%0 Journal Article
%A Walendziak, Andrzej
%T Weak congruences of an algebra with the CEP and the WCIP
%J Czechoslovak Mathematical Journal
%D 2002
%P 117-127
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2002__52_1_a10/
%G en
%F CMJ_2002__52_1_a10
Walendziak, Andrzej. Weak congruences of an algebra with the CEP and the WCIP. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 117-127. http://geodesic.mathdoc.fr/item/CMJ_2002__52_1_a10/