Hypersurfaces in $\mathbb R^n$ and critical points in their external region
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 1-9
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we study the hypersurfaces $M^n$ given as connected compact regular fibers of a differentiable map $f: \mathbb R^{n+1} \rightarrow \mathbb R$, in the cases in which $f$ has finitely many nondegenerate critical points in the unbounded component of $\mathbb R^{n+1} - M^n$.
Classification :
57R70, 57R80
Keywords: hypersurface in $\mathbb R^n$; nondegenerate critical point; noncompact Morse Theory; h-cobordism; Palais-Smale condition
Keywords: hypersurface in $\mathbb R^n$; nondegenerate critical point; noncompact Morse Theory; h-cobordism; Palais-Smale condition
@article{CMJ_2002__52_1_a0,
author = {Manch\'on, P. M. G.},
title = {Hypersurfaces in $\mathbb R^n$ and critical points in their external region},
journal = {Czechoslovak Mathematical Journal},
pages = {1--9},
publisher = {mathdoc},
volume = {52},
number = {1},
year = {2002},
mrnumber = {1885451},
zbl = {1017.57014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002__52_1_a0/}
}
Manchón, P. M. G. Hypersurfaces in $\mathbb R^n$ and critical points in their external region. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 1-9. http://geodesic.mathdoc.fr/item/CMJ_2002__52_1_a0/