Hypersurfaces in $\mathbb R^n$ and critical points in their external region
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 1-9.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we study the hypersurfaces $M^n$ given as connected compact regular fibers of a differentiable map $f: \mathbb R^{n+1} \rightarrow \mathbb R$, in the cases in which $f$ has finitely many nondegenerate critical points in the unbounded component of $\mathbb R^{n+1} - M^n$.
Classification : 57R70, 57R80
Keywords: hypersurface in $\mathbb R^n$; nondegenerate critical point; noncompact Morse Theory; h-cobordism; Palais-Smale condition
@article{CMJ_2002__52_1_a0,
     author = {Manch\'on, P. M. G.},
     title = {Hypersurfaces in $\mathbb R^n$ and critical points in their external region},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1--9},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2002},
     mrnumber = {1885451},
     zbl = {1017.57014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002__52_1_a0/}
}
TY  - JOUR
AU  - Manchón, P. M. G.
TI  - Hypersurfaces in $\mathbb R^n$ and critical points in their external region
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 1
EP  - 9
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002__52_1_a0/
LA  - en
ID  - CMJ_2002__52_1_a0
ER  - 
%0 Journal Article
%A Manchón, P. M. G.
%T Hypersurfaces in $\mathbb R^n$ and critical points in their external region
%J Czechoslovak Mathematical Journal
%D 2002
%P 1-9
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2002__52_1_a0/
%G en
%F CMJ_2002__52_1_a0
Manchón, P. M. G. Hypersurfaces in $\mathbb R^n$ and critical points in their external region. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 1-9. http://geodesic.mathdoc.fr/item/CMJ_2002__52_1_a0/