A note on maximal inequality for stochastic convolutions
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 4, pp. 785-790
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Using unitary dilations we give a very simple proof of the maximal inequality for a stochastic convolution \[ \int ^t_0 S(t-s)\psi (s)\mathrm{d}W(s) \] driven by a Wiener process $W$ in a Hilbert space in the case when the semigroup $S(t)$ is of contraction type.
Classification :
60H05, 60H15
Keywords: infinite-dimensional Wiener process; stochastic convolution; maximal inequality
Keywords: infinite-dimensional Wiener process; stochastic convolution; maximal inequality
@article{CMJ_2001__51_4_a8,
author = {Hausenblas, Erika and Seidler, Jan},
title = {A note on maximal inequality for stochastic convolutions},
journal = {Czechoslovak Mathematical Journal},
pages = {785--790},
publisher = {mathdoc},
volume = {51},
number = {4},
year = {2001},
mrnumber = {1864042},
zbl = {1001.60065},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2001__51_4_a8/}
}
Hausenblas, Erika; Seidler, Jan. A note on maximal inequality for stochastic convolutions. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 4, pp. 785-790. http://geodesic.mathdoc.fr/item/CMJ_2001__51_4_a8/