Uniform exponential ergodicity of stochastic dissipative systems
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 4, pp. 745-762.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study ergodic properties of stochastic dissipative systems with additive noise. We show that the system is uniformly exponentially ergodic provided the growth of nonlinearity at infinity is faster than linear. The abstract result is applied to the stochastic reaction diffusion equation in $\mathbb{R}^d$ with $d\le 3$.
Classification : 37A30, 47A35, 60H10, 60H15, 60J99
Keywords: dissipative system; compact semigroup; exponential ergodicity; spectral gap
@article{CMJ_2001__51_4_a6,
     author = {Goldys, Beniamin and Maslowski, Bohdan},
     title = {Uniform exponential ergodicity of stochastic dissipative systems},
     journal = {Czechoslovak Mathematical Journal},
     pages = {745--762},
     publisher = {mathdoc},
     volume = {51},
     number = {4},
     year = {2001},
     mrnumber = {1864040},
     zbl = {1001.60067},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001__51_4_a6/}
}
TY  - JOUR
AU  - Goldys, Beniamin
AU  - Maslowski, Bohdan
TI  - Uniform exponential ergodicity of stochastic dissipative systems
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 745
EP  - 762
VL  - 51
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001__51_4_a6/
LA  - en
ID  - CMJ_2001__51_4_a6
ER  - 
%0 Journal Article
%A Goldys, Beniamin
%A Maslowski, Bohdan
%T Uniform exponential ergodicity of stochastic dissipative systems
%J Czechoslovak Mathematical Journal
%D 2001
%P 745-762
%V 51
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2001__51_4_a6/
%G en
%F CMJ_2001__51_4_a6
Goldys, Beniamin; Maslowski, Bohdan. Uniform exponential ergodicity of stochastic dissipative systems. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 4, pp. 745-762. http://geodesic.mathdoc.fr/item/CMJ_2001__51_4_a6/