Uniform exponential ergodicity of stochastic dissipative systems
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 4, pp. 745-762
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We study ergodic properties of stochastic dissipative systems with additive noise. We show that the system is uniformly exponentially ergodic provided the growth of nonlinearity at infinity is faster than linear. The abstract result is applied to the stochastic reaction diffusion equation in $\mathbb{R}^d$ with $d\le 3$.
Classification :
37A30, 47A35, 60H10, 60H15, 60J99
Keywords: dissipative system; compact semigroup; exponential ergodicity; spectral gap
Keywords: dissipative system; compact semigroup; exponential ergodicity; spectral gap
@article{CMJ_2001__51_4_a6,
author = {Goldys, Beniamin and Maslowski, Bohdan},
title = {Uniform exponential ergodicity of stochastic dissipative systems},
journal = {Czechoslovak Mathematical Journal},
pages = {745--762},
publisher = {mathdoc},
volume = {51},
number = {4},
year = {2001},
mrnumber = {1864040},
zbl = {1001.60067},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2001__51_4_a6/}
}
TY - JOUR AU - Goldys, Beniamin AU - Maslowski, Bohdan TI - Uniform exponential ergodicity of stochastic dissipative systems JO - Czechoslovak Mathematical Journal PY - 2001 SP - 745 EP - 762 VL - 51 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_2001__51_4_a6/ LA - en ID - CMJ_2001__51_4_a6 ER -
Goldys, Beniamin; Maslowski, Bohdan. Uniform exponential ergodicity of stochastic dissipative systems. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 4, pp. 745-762. http://geodesic.mathdoc.fr/item/CMJ_2001__51_4_a6/