Some results about dissipativity of Kolmogorov operators
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 4, pp. 685-699
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Given a Hilbert space $H$ with a Borel probability measure $\nu $, we prove the $m$-dissipativity in $L^1(H, \nu )$ of a Kolmogorov operator $K$ that is a perturbation, not necessarily of gradient type, of an Ornstein-Uhlenbeck operator.
Classification :
35K57, 37L40, 47B25, 47N50, 70H15, 81S20
Keywords: Kolmogorov equations; invatiant measures; $m$-dissipativity
Keywords: Kolmogorov equations; invatiant measures; $m$-dissipativity
@article{CMJ_2001__51_4_a2,
author = {Prato, Giuseppe Da and Tubaro, Luciano},
title = {Some results about dissipativity of {Kolmogorov} operators},
journal = {Czechoslovak Mathematical Journal},
pages = {685--699},
publisher = {mathdoc},
volume = {51},
number = {4},
year = {2001},
mrnumber = {1864036},
zbl = {0996.47028},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2001__51_4_a2/}
}
TY - JOUR AU - Prato, Giuseppe Da AU - Tubaro, Luciano TI - Some results about dissipativity of Kolmogorov operators JO - Czechoslovak Mathematical Journal PY - 2001 SP - 685 EP - 699 VL - 51 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_2001__51_4_a2/ LA - en ID - CMJ_2001__51_4_a2 ER -
Prato, Giuseppe Da; Tubaro, Luciano. Some results about dissipativity of Kolmogorov operators. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 4, pp. 685-699. http://geodesic.mathdoc.fr/item/CMJ_2001__51_4_a2/