Multiresolution analysis and Radon measures on a locally compact Abelian group
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 4, pp. 859-871
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A multiresolution analysis is defined in a class of locally compact abelian groups $G$. It is shown that the spaces of integrable functions $\mathcal L^p(G)$ and the complex Radon measures $M(G)$ admit a simple characterization in terms of this multiresolution analysis.
Classification :
22B99, 28A33, 43A15
Keywords: multiresolution analysis; Radon measures; topological groups
Keywords: multiresolution analysis; Radon measures; topological groups
@article{CMJ_2001__51_4_a13,
author = {Galindo, F\'elix and Sanz, Javier},
title = {Multiresolution analysis and {Radon} measures on a locally compact {Abelian} group},
journal = {Czechoslovak Mathematical Journal},
pages = {859--871},
publisher = {mathdoc},
volume = {51},
number = {4},
year = {2001},
mrnumber = {1864047},
zbl = {0997.43003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2001__51_4_a13/}
}
TY - JOUR AU - Galindo, Félix AU - Sanz, Javier TI - Multiresolution analysis and Radon measures on a locally compact Abelian group JO - Czechoslovak Mathematical Journal PY - 2001 SP - 859 EP - 871 VL - 51 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_2001__51_4_a13/ LA - en ID - CMJ_2001__51_4_a13 ER -
Galindo, Félix; Sanz, Javier. Multiresolution analysis and Radon measures on a locally compact Abelian group. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 4, pp. 859-871. http://geodesic.mathdoc.fr/item/CMJ_2001__51_4_a13/