Continuity of stochastic convolutions
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 4, pp. 679-684.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $B$ be a Brownian motion, and let $\mathcal C_{\mathrm p}$ be the space of all continuous periodic functions $f\:\mathbb{R}\rightarrow \mathbb{R}$ with period 1. It is shown that the set of all $f\in \mathcal C_{\mathrm p}$ such that the stochastic convolution $X_{f,B}(t)= \int _0^tf(t-s)\mathrm{d}B(s)$, $t\in [0,1]$ does not have a modification with bounded trajectories, and consequently does not have a continuous modification, is of the second Baire category.
Classification : 60G15, 60G17, 60G50, 60H05
Keywords: stochastic convolutions; continuity of Gaussian processes; Gaussian trigonometric series
@article{CMJ_2001__51_4_a1,
     author = {Brze\'zniak, Zdzis{\l}aw and Peszat, Szymon and Zabczyk, Jerzy},
     title = {Continuity of stochastic convolutions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {679--684},
     publisher = {mathdoc},
     volume = {51},
     number = {4},
     year = {2001},
     mrnumber = {1864035},
     zbl = {1001.60056},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001__51_4_a1/}
}
TY  - JOUR
AU  - Brzeźniak, Zdzisław
AU  - Peszat, Szymon
AU  - Zabczyk, Jerzy
TI  - Continuity of stochastic convolutions
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 679
EP  - 684
VL  - 51
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001__51_4_a1/
LA  - en
ID  - CMJ_2001__51_4_a1
ER  - 
%0 Journal Article
%A Brzeźniak, Zdzisław
%A Peszat, Szymon
%A Zabczyk, Jerzy
%T Continuity of stochastic convolutions
%J Czechoslovak Mathematical Journal
%D 2001
%P 679-684
%V 51
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2001__51_4_a1/
%G en
%F CMJ_2001__51_4_a1
Brzeźniak, Zdzisław; Peszat, Szymon; Zabczyk, Jerzy. Continuity of stochastic convolutions. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 4, pp. 679-684. http://geodesic.mathdoc.fr/item/CMJ_2001__51_4_a1/