A way of estimating the convergence rate of the Fourier method for PDE of hyperbolic type
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 3, pp. 561-572.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The Fourier expansion in eigenfunctions of a positive operator is studied with the help of abstract functions of this operator. The rate of convergence is estimated in terms of its eigenvalues, especially for uniform and absolute convergence. Some particular results are obtained for elliptic operators and hyperbolic equations.
Classification : 35L10, 35L90, 42C15, 47A60, 47A70, 47F05
Keywords: elliptic operators; eigenfunctions; Fourier series; hyperbolic equation
@article{CMJ_2001__51_3_a8,
     author = {Pustylnik, Evgeniy},
     title = {A way of estimating the convergence rate of the {Fourier} method for {PDE} of hyperbolic type},
     journal = {Czechoslovak Mathematical Journal},
     pages = {561--572},
     publisher = {mathdoc},
     volume = {51},
     number = {3},
     year = {2001},
     mrnumber = {1851547},
     zbl = {1079.35527},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001__51_3_a8/}
}
TY  - JOUR
AU  - Pustylnik, Evgeniy
TI  - A way of estimating the convergence rate of the Fourier method for PDE of hyperbolic type
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 561
EP  - 572
VL  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001__51_3_a8/
LA  - en
ID  - CMJ_2001__51_3_a8
ER  - 
%0 Journal Article
%A Pustylnik, Evgeniy
%T A way of estimating the convergence rate of the Fourier method for PDE of hyperbolic type
%J Czechoslovak Mathematical Journal
%D 2001
%P 561-572
%V 51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2001__51_3_a8/
%G en
%F CMJ_2001__51_3_a8
Pustylnik, Evgeniy. A way of estimating the convergence rate of the Fourier method for PDE of hyperbolic type. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 3, pp. 561-572. http://geodesic.mathdoc.fr/item/CMJ_2001__51_3_a8/