Multi-faithful spanning trees of infinite graphs
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 3, pp. 477-492
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
For an end $\tau $ and a tree $T$ of a graph $G$ we denote respectively by $m(\tau )$ and $m_{T}(\tau )$ the maximum numbers of pairwise disjoint rays of $G$ and $T$ belonging to $\tau $, and we define $\mathop {\mathrm tm}(\tau ) := \min \lbrace m_{T}(\tau )\: T \text{is} \text{a} \text{spanning} \text{tree} \text{of} G \rbrace $. In this paper we give partial answers—affirmative and negative ones—to the general problem of determining if, for a function $f$ mapping every end $\tau $ of $G$ to a cardinal $f(\tau )$ such that $\mathop {\mathrm tm}(\tau ) \le f(\tau ) \le m(\tau )$, there exists a spanning tree $T$ of $G$ such that $m_{T}(\tau ) = f(\tau )$ for every end $\tau $ of $G$.
Classification :
05C05, 05C99
Keywords: infinite graph; end; end-faithful; spanning tree; multiplicity
Keywords: infinite graph; end; end-faithful; spanning tree; multiplicity
@article{CMJ_2001__51_3_a3,
author = {Polat, Norbert},
title = {Multi-faithful spanning trees of infinite graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {477--492},
publisher = {mathdoc},
volume = {51},
number = {3},
year = {2001},
mrnumber = {1851542},
zbl = {1079.05516},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2001__51_3_a3/}
}
Polat, Norbert. Multi-faithful spanning trees of infinite graphs. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 3, pp. 477-492. http://geodesic.mathdoc.fr/item/CMJ_2001__51_3_a3/