Multi-faithful spanning trees of infinite graphs
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 3, pp. 477-492.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For an end $\tau $ and a tree $T$ of a graph $G$ we denote respectively by $m(\tau )$ and $m_{T}(\tau )$ the maximum numbers of pairwise disjoint rays of $G$ and $T$ belonging to $\tau $, and we define $\mathop {\mathrm tm}(\tau ) := \min \lbrace m_{T}(\tau )\: T \text{is} \text{a} \text{spanning} \text{tree} \text{of} G \rbrace $. In this paper we give partial answers—affirmative and negative ones—to the general problem of determining if, for a function $f$ mapping every end $\tau $ of $G$ to a cardinal $f(\tau )$ such that $\mathop {\mathrm tm}(\tau ) \le f(\tau ) \le m(\tau )$, there exists a spanning tree $T$ of $G$ such that $m_{T}(\tau ) = f(\tau )$ for every end $\tau $ of $G$.
Classification : 05C05, 05C99
Keywords: infinite graph; end; end-faithful; spanning tree; multiplicity
@article{CMJ_2001__51_3_a3,
     author = {Polat, Norbert},
     title = {Multi-faithful spanning trees of infinite graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {477--492},
     publisher = {mathdoc},
     volume = {51},
     number = {3},
     year = {2001},
     mrnumber = {1851542},
     zbl = {1079.05516},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001__51_3_a3/}
}
TY  - JOUR
AU  - Polat, Norbert
TI  - Multi-faithful spanning trees of infinite graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 477
EP  - 492
VL  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001__51_3_a3/
LA  - en
ID  - CMJ_2001__51_3_a3
ER  - 
%0 Journal Article
%A Polat, Norbert
%T Multi-faithful spanning trees of infinite graphs
%J Czechoslovak Mathematical Journal
%D 2001
%P 477-492
%V 51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2001__51_3_a3/
%G en
%F CMJ_2001__51_3_a3
Polat, Norbert. Multi-faithful spanning trees of infinite graphs. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 3, pp. 477-492. http://geodesic.mathdoc.fr/item/CMJ_2001__51_3_a3/