Uniform convergence of the generalized Bieberbach polynomials in regions with zero angles
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 3, pp. 643-660.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $C$ be the extended complex plane; $G\subset C$ a finite Jordan with $ 0\in G$; $w=\varphi (z)$ the conformal mapping of $G$ onto the disk $ B\left( {0;\rho _{0}}\right):={\left\rbrace {w\:{\left| {w}\right| }\rho _{0}} \right\lbrace }$ normalized by $\varphi (0)=0$ and ${\varphi }^{\prime }(0)=1$. Let us set $\varphi _{p}(z):=\int _{0}^{z}{{\left[ {{\varphi } ^{\prime }(\zeta )}\right] }^{{2}/{p}}}\mathrm{d}\zeta $, and let $\pi _{n,p}(z)$ be the generalized Bieberbach polynomial of degree $n$ for the pair $(G,0)$, which minimizes the integral $ \iint \limits _{G}{{\left| {{\varphi }_{p}^{\prime }(z)-{P}_{n}^{\prime }(z)}\right| }}^{p}\mathrm{d}\sigma _{z}$ in the class of all polynomials of degree not exceeding $\le n$ with $P_{n}(0)=0$, ${P}_{n}^{\prime }(0)=1$. In this paper we study the uniform convergence of the generalized Bieberbach polynomials $\pi _{n,p}(z)$ to $\varphi _{p}(z)$ on $\overline{G}$ with interior and exterior zero angles and determine its dependence on the properties of boundary arcs and the degree of their tangency.
Classification : 30C10, 30C30, 30C70, 30E10
Keywords: conformal mapping; Quasiconformal curve; Bieberbach polynomials; complex approximation
@article{CMJ_2001__51_3_a14,
     author = {Abdullayev, F. G.},
     title = {Uniform convergence of the generalized {Bieberbach} polynomials in regions with zero angles},
     journal = {Czechoslovak Mathematical Journal},
     pages = {643--660},
     publisher = {mathdoc},
     volume = {51},
     number = {3},
     year = {2001},
     mrnumber = {1851553},
     zbl = {1079.30506},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001__51_3_a14/}
}
TY  - JOUR
AU  - Abdullayev, F. G.
TI  - Uniform convergence of the generalized Bieberbach polynomials in regions with zero angles
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 643
EP  - 660
VL  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001__51_3_a14/
LA  - en
ID  - CMJ_2001__51_3_a14
ER  - 
%0 Journal Article
%A Abdullayev, F. G.
%T Uniform convergence of the generalized Bieberbach polynomials in regions with zero angles
%J Czechoslovak Mathematical Journal
%D 2001
%P 643-660
%V 51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2001__51_3_a14/
%G en
%F CMJ_2001__51_3_a14
Abdullayev, F. G. Uniform convergence of the generalized Bieberbach polynomials in regions with zero angles. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 3, pp. 643-660. http://geodesic.mathdoc.fr/item/CMJ_2001__51_3_a14/