A characterization of the interval function of a (finite or infinite) connected graph
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 3, pp. 635-642.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

By the interval function of a finite connected graph we mean the interval function in the sense of H. M. Mulder. This function is very important for studying properties of a finite connected graph which depend on the distance between vertices. The interval function of a finite connected graph was characterized by the present author. The interval function of an infinite connected graph can be defined similarly to that of a finite one. In the present paper we give a characterization of the interval function of each connected graph.
Classification : 05C12
Keywords: distance in a graph; interval function
@article{CMJ_2001__51_3_a13,
     author = {Nebesk\'y, Ladislav},
     title = {A characterization of the interval function of a (finite or infinite) connected graph},
     journal = {Czechoslovak Mathematical Journal},
     pages = {635--642},
     publisher = {mathdoc},
     volume = {51},
     number = {3},
     year = {2001},
     mrnumber = {1851552},
     zbl = {1079.05505},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001__51_3_a13/}
}
TY  - JOUR
AU  - Nebeský, Ladislav
TI  - A characterization of the interval function of a (finite or infinite) connected graph
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 635
EP  - 642
VL  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001__51_3_a13/
LA  - en
ID  - CMJ_2001__51_3_a13
ER  - 
%0 Journal Article
%A Nebeský, Ladislav
%T A characterization of the interval function of a (finite or infinite) connected graph
%J Czechoslovak Mathematical Journal
%D 2001
%P 635-642
%V 51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2001__51_3_a13/
%G en
%F CMJ_2001__51_3_a13
Nebeský, Ladislav. A characterization of the interval function of a (finite or infinite) connected graph. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 3, pp. 635-642. http://geodesic.mathdoc.fr/item/CMJ_2001__51_3_a13/