Estimates for the energy integral of quasiregular mappings on Riemannian manifolds and isoperimetry
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 3, pp. 585-608.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The rate of growth of the energy integral of a quasiregular mapping $f\:\mathcal X\rightarrow \mathcal Y$ is estimated in terms of a special isoperimetric condition on $\mathcal Y$. The estimate leads to new Phragmén-Lindelöf type theorems.
Classification : 30C65, 35J60
Keywords: Phragmén-Lindelöf type theorems; quasiregular mappings; isoperimetry
@article{CMJ_2001__51_3_a10,
     author = {Martio, O. and Miklyukov, V. and Vuorinen, M.},
     title = {Estimates for the energy integral of quasiregular mappings on {Riemannian} manifolds and isoperimetry},
     journal = {Czechoslovak Mathematical Journal},
     pages = {585--608},
     publisher = {mathdoc},
     volume = {51},
     number = {3},
     year = {2001},
     mrnumber = {1851549},
     zbl = {1079.30508},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001__51_3_a10/}
}
TY  - JOUR
AU  - Martio, O.
AU  - Miklyukov, V.
AU  - Vuorinen, M.
TI  - Estimates for the energy integral of quasiregular mappings on Riemannian manifolds and isoperimetry
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 585
EP  - 608
VL  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001__51_3_a10/
LA  - en
ID  - CMJ_2001__51_3_a10
ER  - 
%0 Journal Article
%A Martio, O.
%A Miklyukov, V.
%A Vuorinen, M.
%T Estimates for the energy integral of quasiregular mappings on Riemannian manifolds and isoperimetry
%J Czechoslovak Mathematical Journal
%D 2001
%P 585-608
%V 51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2001__51_3_a10/
%G en
%F CMJ_2001__51_3_a10
Martio, O.; Miklyukov, V.; Vuorinen, M. Estimates for the energy integral of quasiregular mappings on Riemannian manifolds and isoperimetry. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 3, pp. 585-608. http://geodesic.mathdoc.fr/item/CMJ_2001__51_3_a10/