A comparison on the commutative neutrix convolution of distributions and the exchange formula
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 3, pp. 463-471.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\tilde{f}$, $\tilde{g}$ be ultradistributions in $\mathcal Z^{\prime }$ and let $\tilde{f}_n = \tilde{f} * \delta _n$ and $\tilde{g}_n = \tilde{g} * \sigma _n$ where $\lbrace \delta _n \rbrace $ is a sequence in $\mathcal Z$ which converges to the Dirac-delta function $\delta $. Then the neutrix product $\tilde{f} \diamond \tilde{g}$ is defined on the space of ultradistributions $\mathcal Z^{\prime }$ as the neutrix limit of the sequence $\lbrace {1 \over 2}(\tilde{f}_n \tilde{g} + \tilde{f} \tilde{g}_n)\rbrace $ provided the limit $\tilde{h}$ exist in the sense that \[ \mathop {\mathrm N\text{-}lim}_{n\rightarrow \infty }{1 \over 2} \langle \tilde{f}_n \tilde{g} +\tilde{f} \tilde{g}_n, \psi \rangle = \langle \tilde{h}, \psi \rangle \] for all $\psi $ in $\mathcal Z$. We also prove that the neutrix convolution product $f \mathbin {\diamondsuit \!\!\!\!*\,}g$ exist in $\mathcal D^{\prime }$, if and only if the neutrix product $\tilde{f} \diamond \tilde{g}$ exist in $\mathcal Z^{\prime }$ and the exchange formula \[ F(f \mathbin {\diamondsuit \!\!\!\!*\,}g) = \tilde{f} \diamond \tilde{g} \] is then satisfied.
Classification : 46F10
Keywords: distributions; ultradistributions; delta-function; neutrix limit; neutrix product; neutrix convolution; exchange formula
@article{CMJ_2001__51_3_a1,
     author = {Kili\c{c}man, Adem},
     title = {A comparison on the commutative neutrix convolution of distributions and the exchange formula},
     journal = {Czechoslovak Mathematical Journal},
     pages = {463--471},
     publisher = {mathdoc},
     volume = {51},
     number = {3},
     year = {2001},
     mrnumber = {1851540},
     zbl = {1079.46514},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001__51_3_a1/}
}
TY  - JOUR
AU  - Kiliçman, Adem
TI  - A comparison on the commutative neutrix convolution of distributions and the exchange formula
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 463
EP  - 471
VL  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001__51_3_a1/
LA  - en
ID  - CMJ_2001__51_3_a1
ER  - 
%0 Journal Article
%A Kiliçman, Adem
%T A comparison on the commutative neutrix convolution of distributions and the exchange formula
%J Czechoslovak Mathematical Journal
%D 2001
%P 463-471
%V 51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2001__51_3_a1/
%G en
%F CMJ_2001__51_3_a1
Kiliçman, Adem. A comparison on the commutative neutrix convolution of distributions and the exchange formula. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 3, pp. 463-471. http://geodesic.mathdoc.fr/item/CMJ_2001__51_3_a1/