The general structure of inverse polynomial modules
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 343-349
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we compute injective, projective and flat dimensions of inverse polynomial modules as $R[x]$-modules. We also generalize Hom and Ext functors of inverse polynomial modules to any submonoid but we show Tor functor of inverse polynomial modules can be generalized only for a symmetric submonoid.
Classification :
13C11, 16D50, 16D80, 16E05, 16E10, 16E30, 16S36
Keywords: module; inverse polynomial; homological dimensions; Hom; Ext; Tor
Keywords: module; inverse polynomial; homological dimensions; Hom; Ext; Tor
@article{CMJ_2001__51_2_a8,
author = {Park, Sangwon},
title = {The general structure of inverse polynomial modules},
journal = {Czechoslovak Mathematical Journal},
pages = {343--349},
publisher = {mathdoc},
volume = {51},
number = {2},
year = {2001},
mrnumber = {1844314},
zbl = {0983.16006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2001__51_2_a8/}
}
Park, Sangwon. The general structure of inverse polynomial modules. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 343-349. http://geodesic.mathdoc.fr/item/CMJ_2001__51_2_a8/