On the best ranges for $A^+_p$ and $RH_r^+$
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 285-301.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we study the relationship between one-sided reverse Hölder classes $RH_r^+$ and the $A_p^+$ classes. We find the best possible range of $RH_r^+$ to which an $A_1^+$ weight belongs, in terms of the $A_1^+$ constant. Conversely, we also find the best range of $A_p^+$ to which a $RH_\infty ^+$ weight belongs, in terms of the $RH_\infty ^+$ constant. Similar problems for $A_p^+$, $1$ and $RH_r^+$, $1$ are solved using factorization.
Classification : 42B25
Keywords: one-sided weights; one-sided reverse Hölder; factorization
@article{CMJ_2001__51_2_a5,
     author = {Riveros, M. S. and Torre, A. de la},
     title = {On the best ranges for $A^+_p$ and $RH_r^+$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {285--301},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {2001},
     mrnumber = {1844311},
     zbl = {0980.42015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001__51_2_a5/}
}
TY  - JOUR
AU  - Riveros, M. S.
AU  - Torre, A. de la
TI  - On the best ranges for $A^+_p$ and $RH_r^+$
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 285
EP  - 301
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001__51_2_a5/
LA  - en
ID  - CMJ_2001__51_2_a5
ER  - 
%0 Journal Article
%A Riveros, M. S.
%A Torre, A. de la
%T On the best ranges for $A^+_p$ and $RH_r^+$
%J Czechoslovak Mathematical Journal
%D 2001
%P 285-301
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2001__51_2_a5/
%G en
%F CMJ_2001__51_2_a5
Riveros, M. S.; Torre, A. de la. On the best ranges for $A^+_p$ and $RH_r^+$. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 285-301. http://geodesic.mathdoc.fr/item/CMJ_2001__51_2_a5/