Sequential convergences on Boolean algebras defined by systems of maximal filters
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 261-274.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study sequential convergences defined on a Boolean algebra by systems of maximal filters. We describe the order properties of the system of all such convergences. We introduce the category of 2-generated convergence Boolean algebras and generalize the construction of Novák sequential envelope to such algebras.
Classification : 06E15, 54A20, 54B30, 54H12
Keywords: sequential convergence on Boolean algebras; 2-generated convergence; 2-embedded Boolean algebra; absolutely sequentially closed Boolean algebra
@article{CMJ_2001__51_2_a3,
     author = {Fri\v{c}, Roman and Jakub{\'\i}k, J\'an},
     title = {Sequential convergences on {Boolean} algebras defined by systems of maximal filters},
     journal = {Czechoslovak Mathematical Journal},
     pages = {261--274},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {2001},
     mrnumber = {1844309},
     zbl = {0976.54003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001__51_2_a3/}
}
TY  - JOUR
AU  - Frič, Roman
AU  - Jakubík, Ján
TI  - Sequential convergences on Boolean algebras defined by systems of maximal filters
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 261
EP  - 274
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001__51_2_a3/
LA  - en
ID  - CMJ_2001__51_2_a3
ER  - 
%0 Journal Article
%A Frič, Roman
%A Jakubík, Ján
%T Sequential convergences on Boolean algebras defined by systems of maximal filters
%J Czechoslovak Mathematical Journal
%D 2001
%P 261-274
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2001__51_2_a3/
%G en
%F CMJ_2001__51_2_a3
Frič, Roman; Jakubík, Ján. Sequential convergences on Boolean algebras defined by systems of maximal filters. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 261-274. http://geodesic.mathdoc.fr/item/CMJ_2001__51_2_a3/