The all-paths transit function of a graph
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 439-448.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A transit function $R$ on a set $V$ is a function $R\:V\times V\rightarrow 2^{V}$ satisfying the axioms $u\in R(u,v)$, $R(u,v)=R(v,u)$ and $R(u,u)=\lbrace u\rbrace $, for all $u,v \in V$. The all-paths transit function of a connected graph is characterized by transit axioms.
Classification : 05C12, 05C75, 05C99
Keywords: all-paths convexity; transit function; block graph
@article{CMJ_2001__51_2_a16,
     author = {Changat, Manoj and Klav\v{z}ar, Sandi and Mulder, Henry Martyn},
     title = {The all-paths transit function of a graph},
     journal = {Czechoslovak Mathematical Journal},
     pages = {439--448},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {2001},
     mrnumber = {1844322},
     zbl = {0977.05135},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001__51_2_a16/}
}
TY  - JOUR
AU  - Changat, Manoj
AU  - Klavžar, Sandi
AU  - Mulder, Henry Martyn
TI  - The all-paths transit function of a graph
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 439
EP  - 448
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001__51_2_a16/
LA  - en
ID  - CMJ_2001__51_2_a16
ER  - 
%0 Journal Article
%A Changat, Manoj
%A Klavžar, Sandi
%A Mulder, Henry Martyn
%T The all-paths transit function of a graph
%J Czechoslovak Mathematical Journal
%D 2001
%P 439-448
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2001__51_2_a16/
%G en
%F CMJ_2001__51_2_a16
Changat, Manoj; Klavžar, Sandi; Mulder, Henry Martyn. The all-paths transit function of a graph. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 439-448. http://geodesic.mathdoc.fr/item/CMJ_2001__51_2_a16/