Subgroups and hulls of Specker lattice-ordered groups
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 395-413
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this article, it will be shown that every $\ell $-subgroup of a Specker $\ell $-group has singular elements and that the class of $\ell $-groups that are $\ell $-subgroups of Specker $\ell $-group form a torsion class. Methods of adjoining units and bases to Specker $\ell $-groups are then studied with respect to the generalized Boolean algebra of singular elements, as is the strongly projectable hull of a Specker $\ell $-group.
Classification :
06F15, 06F20, 06F25, 12J15, 46A40
Keywords: lattice-ordered groups; $f$-rings; Specker groups
Keywords: lattice-ordered groups; $f$-rings; Specker groups
@article{CMJ_2001__51_2_a13,
author = {Conrad, Paul F. and Darnel, Michael R.},
title = {Subgroups and hulls of {Specker} lattice-ordered groups},
journal = {Czechoslovak Mathematical Journal},
pages = {395--413},
publisher = {mathdoc},
volume = {51},
number = {2},
year = {2001},
mrnumber = {1844319},
zbl = {0978.06011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2001__51_2_a13/}
}
TY - JOUR AU - Conrad, Paul F. AU - Darnel, Michael R. TI - Subgroups and hulls of Specker lattice-ordered groups JO - Czechoslovak Mathematical Journal PY - 2001 SP - 395 EP - 413 VL - 51 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_2001__51_2_a13/ LA - en ID - CMJ_2001__51_2_a13 ER -
Conrad, Paul F.; Darnel, Michael R. Subgroups and hulls of Specker lattice-ordered groups. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 395-413. http://geodesic.mathdoc.fr/item/CMJ_2001__51_2_a13/