An upper bound on the basis number of the powers of the complete graphs
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 231-238.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The basis number of a graph $G$ is defined by Schmeichel to be the least integer $h$ such that $G$ has an $h$-fold basis for its cycle space. MacLane showed that a graph is planar if and only if its basis number is $\le 2$. Schmeichel proved that the basis number of the complete graph $K_n$ is at most $3$. We generalize the result of Schmeichel by showing that the basis number of the $d$-th power of $K_n$ is at most $2d+1$.
Classification : 05C10, 05C35, 05C38, 05C99
@article{CMJ_2001__51_2_a1,
     author = {Alsardary, Salar Y.},
     title = {An upper bound on the basis number of the powers of the complete graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {231--238},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {2001},
     mrnumber = {1844307},
     zbl = {0977.05134},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001__51_2_a1/}
}
TY  - JOUR
AU  - Alsardary, Salar Y.
TI  - An upper bound on the basis number of the powers of the complete graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 231
EP  - 238
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001__51_2_a1/
LA  - en
ID  - CMJ_2001__51_2_a1
ER  - 
%0 Journal Article
%A Alsardary, Salar Y.
%T An upper bound on the basis number of the powers of the complete graphs
%J Czechoslovak Mathematical Journal
%D 2001
%P 231-238
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2001__51_2_a1/
%G en
%F CMJ_2001__51_2_a1
Alsardary, Salar Y. An upper bound on the basis number of the powers of the complete graphs. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 231-238. http://geodesic.mathdoc.fr/item/CMJ_2001__51_2_a1/