Annihilators in normal autometrized algebras
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 111-120
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The concepts of an annihilator and a relative annihilator in an autometrized $l$-algebra are introduced. It is shown that every relative annihilator in a normal autometrized $l$-algebra $\mathcal {A}$ is an ideal of $\mathcal {A}$ and every principal ideal of $\mathcal {A}$ is an annihilator of $\mathcal {A}$. The set of all annihilators of $\mathcal {A}$ forms a complete lattice. The concept of an $I$-polar is introduced for every ideal $I$ of $\mathcal {A}$. The set of all $I$-polars is a complete lattice which becomes a two-element chain provided $I$ is prime. The $I$-polars are characterized as pseudocomplements in the lattice of all ideals of $\mathcal {A}$ containing $I$.
Classification :
06F05
Keywords: autometrized algebra; annihilator; relative annihilator; ideal; polar
Keywords: autometrized algebra; annihilator; relative annihilator; ideal; polar
@article{CMJ_2001__51_1_a9,
author = {Chajda, Ivan and Rach\r{u}nek, Ji\v{r}{\'\i}},
title = {Annihilators in normal autometrized algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {111--120},
publisher = {mathdoc},
volume = {51},
number = {1},
year = {2001},
mrnumber = {1814636},
zbl = {1079.06502},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2001__51_1_a9/}
}
Chajda, Ivan; Rachůnek, Jiří. Annihilators in normal autometrized algebras. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 111-120. http://geodesic.mathdoc.fr/item/CMJ_2001__51_1_a9/