On vector valued measure spaces of bounded $\Phi$-variation containing copies of $\ell_\infty$
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 67-72
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Given a Young function $\Phi $, we study the existence of copies of $c_0$ and $\ell _{\infty }$ in $\mathop {\mathrm cabv}\nolimits _{\Phi } (\mu ,X)$ and in $\mathop {\mathrm cabsv}\nolimits _{\Phi } (\mu ,X)$, the countably additive, $\mu $-continuous, and $X$-valued measure spaces of bounded $\Phi $-variation and bounded $\Phi $-semivariation, respectively.
@article{CMJ_2001__51_1_a6,
author = {Rivera, Mar{\'\i}a J.},
title = {On vector valued measure spaces of bounded $\Phi$-variation containing copies of $\ell_\infty$},
journal = {Czechoslovak Mathematical Journal},
pages = {67--72},
publisher = {mathdoc},
volume = {51},
number = {1},
year = {2001},
mrnumber = {1814633},
zbl = {1079.46513},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2001__51_1_a6/}
}
TY - JOUR AU - Rivera, María J. TI - On vector valued measure spaces of bounded $\Phi$-variation containing copies of $\ell_\infty$ JO - Czechoslovak Mathematical Journal PY - 2001 SP - 67 EP - 72 VL - 51 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_2001__51_1_a6/ LA - en ID - CMJ_2001__51_1_a6 ER -
Rivera, María J. On vector valued measure spaces of bounded $\Phi$-variation containing copies of $\ell_\infty$. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 67-72. http://geodesic.mathdoc.fr/item/CMJ_2001__51_1_a6/