A gradient estimate for solutions of the heat equation. II
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 39-44.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The author obtains an estimate for the spatial gradient of solutions of the heat equation, subject to a homogeneous Neumann boundary condition, in terms of the gradient of the initial data. The proof is accomplished via the maximum principle; the main assumption is that the sufficiently smooth boundary be convex.
Classification : 35B45, 35B50, 35B65, 35K05, 35K20
Keywords: gradient estimate; heat equation; maximum principle
@article{CMJ_2001__51_1_a3,
     author = {Kahane, Charles S.},
     title = {A gradient estimate for solutions of the heat equation. {II}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {39--44},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {2001},
     mrnumber = {1814630},
     zbl = {1079.35037},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001__51_1_a3/}
}
TY  - JOUR
AU  - Kahane, Charles S.
TI  - A gradient estimate for solutions of the heat equation. II
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 39
EP  - 44
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001__51_1_a3/
LA  - en
ID  - CMJ_2001__51_1_a3
ER  - 
%0 Journal Article
%A Kahane, Charles S.
%T A gradient estimate for solutions of the heat equation. II
%J Czechoslovak Mathematical Journal
%D 2001
%P 39-44
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2001__51_1_a3/
%G en
%F CMJ_2001__51_1_a3
Kahane, Charles S. A gradient estimate for solutions of the heat equation. II. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 39-44. http://geodesic.mathdoc.fr/item/CMJ_2001__51_1_a3/