Strong reflexivity of Abelian groups
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 213-224.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A reflexive topological group $G$ is called strongly reflexive if each closed subgroup and each Hausdorff quotient of the group $G$ and of its dual group is reflexive. In this paper we establish an adequate concept of strong reflexivity for convergence groups. We prove that complete metrizable nuclear groups and products of countably many locally compact topological groups are BB-strongly reflexive.
Classification : 20K45, 22A05, 46A16, 46A99
Keywords: Pontryagin duality theorem; dual group; convergence group; continuous convergence; reflexive group; strong reflexive group; k-space; Čech complete group; k-group
@article{CMJ_2001__51_1_a20,
     author = {Bruguera, Montserrat and Chasco, Mar{\'\i}a Jes\'us},
     title = {Strong reflexivity of {Abelian} groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {213--224},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {2001},
     mrnumber = {1814647},
     zbl = {1079.22500},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001__51_1_a20/}
}
TY  - JOUR
AU  - Bruguera, Montserrat
AU  - Chasco, María Jesús
TI  - Strong reflexivity of Abelian groups
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 213
EP  - 224
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001__51_1_a20/
LA  - en
ID  - CMJ_2001__51_1_a20
ER  - 
%0 Journal Article
%A Bruguera, Montserrat
%A Chasco, María Jesús
%T Strong reflexivity of Abelian groups
%J Czechoslovak Mathematical Journal
%D 2001
%P 213-224
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2001__51_1_a20/
%G en
%F CMJ_2001__51_1_a20
Bruguera, Montserrat; Chasco, María Jesús. Strong reflexivity of Abelian groups. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 213-224. http://geodesic.mathdoc.fr/item/CMJ_2001__51_1_a20/