On asymptotic properties of a strongly nonlinear differential equation
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 121-126
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The paper describes asymptotic properties of a strongly nonlinear system $\dot{x}=f(t,x)$, $(t,x)\in \mathbb{R}\times \mathbb{R}^n$. The existence of an $\lfloor {}n/2\rfloor $ parametric family of solutions tending to zero is proved. Conditions posed on the system try to be independent of its linear approximation.
Classification :
34D05, 34D99, 34E99
Keywords: ordinary differential equations; asymptotic properties
Keywords: ordinary differential equations; asymptotic properties
@article{CMJ_2001__51_1_a10,
author = {Adamec, Ladislav},
title = {On asymptotic properties of a strongly nonlinear differential equation},
journal = {Czechoslovak Mathematical Journal},
pages = {121--126},
publisher = {mathdoc},
volume = {51},
number = {1},
year = {2001},
mrnumber = {1814637},
zbl = {1079.34528},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2001__51_1_a10/}
}
Adamec, Ladislav. On asymptotic properties of a strongly nonlinear differential equation. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 121-126. http://geodesic.mathdoc.fr/item/CMJ_2001__51_1_a10/