Commutativity of rings through a Streb’s result
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 4, pp. 791-801.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we investigate commutativity of rings with unity satisfying any one of the properties: \[ \begin{aligned} \lbrace 1- g(yx^{m}) \rbrace \ [yx^{m} - x^{r} f (yx^{m}) \ x^s, x] \lbrace 1- h (yx^{m}) \rbrace = 0, \\\lbrace 1- g(yx^{m}) \rbrace \ [x^{m} y - x^{r} f (yx^{m}) x^{s}, x] \lbrace 1- h (yx^{m}) \rbrace = 0, \\^{t} [x,y^{n}] = g (x) [f (x), y] h (x)\ {\mathrm and} \ \ [x,y^{n}] \ y^{t} = g (x) [f (x), y] h (x) \end{aligned} \] for some $f(X)$ in $X^{2} {\mathbb Z}[X]$ and $g(X)$, $ h(X)$ in ${\mathbb Z} [X]$, where $m \ge 0$, $ r \ge 0$, $ s \ge 0$, $ n > 0$, $ t > 0$ are non-negative integers. We also extend these results to the case when integral exponents in the underlying conditions are no longer fixed, rather they depend on the pair of ring elements $x$ and $y$ for their values. Further, under different appropriate constraints on commutators, commutativity of rings has been studied. These results generalize a number of commutativity theorems established recently.
Classification : 16R50, 16U70, 16U80
Keywords: commutators; division rings; factorsubrings; polynomial identities; torsion-free rings
@article{CMJ_2000__50_4_a7,
     author = {Khan, Moharram A.},
     title = {Commutativity of rings through a {Streb{\textquoteright}s} result},
     journal = {Czechoslovak Mathematical Journal},
     pages = {791--801},
     publisher = {mathdoc},
     volume = {50},
     number = {4},
     year = {2000},
     mrnumber = {1792970},
     zbl = {1079.16504},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2000__50_4_a7/}
}
TY  - JOUR
AU  - Khan, Moharram A.
TI  - Commutativity of rings through a Streb’s result
JO  - Czechoslovak Mathematical Journal
PY  - 2000
SP  - 791
EP  - 801
VL  - 50
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2000__50_4_a7/
LA  - en
ID  - CMJ_2000__50_4_a7
ER  - 
%0 Journal Article
%A Khan, Moharram A.
%T Commutativity of rings through a Streb’s result
%J Czechoslovak Mathematical Journal
%D 2000
%P 791-801
%V 50
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2000__50_4_a7/
%G en
%F CMJ_2000__50_4_a7
Khan, Moharram A. Commutativity of rings through a Streb’s result. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 4, pp. 791-801. http://geodesic.mathdoc.fr/item/CMJ_2000__50_4_a7/