Commutativity of rings through a Streb’s result
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 4, pp. 791-801
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we investigate commutativity of rings with unity satisfying any one of the properties: \[ \begin{aligned} \lbrace 1- g(yx^{m}) \rbrace \ [yx^{m} - x^{r} f (yx^{m}) \ x^s, x] \lbrace 1- h (yx^{m}) \rbrace = 0, \\\lbrace 1- g(yx^{m}) \rbrace \ [x^{m} y - x^{r} f (yx^{m}) x^{s}, x] \lbrace 1- h (yx^{m}) \rbrace = 0, \\^{t} [x,y^{n}] = g (x) [f (x), y] h (x)\ {\mathrm and} \ \ [x,y^{n}] \ y^{t} = g (x) [f (x), y] h (x) \end{aligned} \] for some $f(X)$ in $X^{2} {\mathbb Z}[X]$ and $g(X)$, $ h(X)$ in ${\mathbb Z} [X]$, where $m \ge 0$, $ r \ge 0$, $ s \ge 0$, $ n > 0$, $ t > 0$ are non-negative integers. We also extend these results to the case when integral exponents in the underlying conditions are no longer fixed, rather they depend on the pair of ring elements $x$ and $y$ for their values. Further, under different appropriate constraints on commutators, commutativity of rings has been studied. These results generalize a number of commutativity theorems established recently.
Classification :
16R50, 16U70, 16U80
Keywords: commutators; division rings; factorsubrings; polynomial identities; torsion-free rings
Keywords: commutators; division rings; factorsubrings; polynomial identities; torsion-free rings
@article{CMJ_2000__50_4_a7,
author = {Khan, Moharram A.},
title = {Commutativity of rings through a {Streb{\textquoteright}s} result},
journal = {Czechoslovak Mathematical Journal},
pages = {791--801},
publisher = {mathdoc},
volume = {50},
number = {4},
year = {2000},
mrnumber = {1792970},
zbl = {1079.16504},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2000__50_4_a7/}
}
Khan, Moharram A. Commutativity of rings through a Streb’s result. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 4, pp. 791-801. http://geodesic.mathdoc.fr/item/CMJ_2000__50_4_a7/