Some topological properties of $\omega$-covering sets
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 4, pp. 865-877
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We prove the following theorems: There exists an ${\omega }$-covering with the property $s_0$. Under $\mathop {\mathrm cov}\nolimits ({\mathcal N}) = $ there exists $X$ such that $ \forall _{B \in {\mathcal B}or} [B\cap X$ is not an ${\omega }$-covering or $X\setminus B$ is not an ${\omega }$-covering]. Also we characterize the property of being an ${\omega }$-covering.
Classification :
03E15, 03E20, 28A05, 28E15
Keywords: ${\omega }$-covering set; ${\mathcal E}$; hereditarily nonparadoxical set
Keywords: ${\omega }$-covering set; ${\mathcal E}$; hereditarily nonparadoxical set
@article{CMJ_2000__50_4_a13,
author = {Nowik, Andrzej},
title = {Some topological properties of $\omega$-covering sets},
journal = {Czechoslovak Mathematical Journal},
pages = {865--877},
publisher = {mathdoc},
volume = {50},
number = {4},
year = {2000},
mrnumber = {1792976},
zbl = {1079.03547},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2000__50_4_a13/}
}
Nowik, Andrzej. Some topological properties of $\omega$-covering sets. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 4, pp. 865-877. http://geodesic.mathdoc.fr/item/CMJ_2000__50_4_a13/