Some topological properties of $\omega$-covering sets
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 4, pp. 865-877.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove the following theorems: There exists an ${\omega }$-covering with the property $s_0$. Under $\mathop {\mathrm cov}\nolimits ({\mathcal N}) = $ there exists $X$ such that $ \forall _{B \in {\mathcal B}or} [B\cap X$ is not an ${\omega }$-covering or $X\setminus B$ is not an ${\omega }$-covering]. Also we characterize the property of being an ${\omega }$-covering.
Classification : 03E15, 03E20, 28A05, 28E15
Keywords: ${\omega }$-covering set; ${\mathcal E}$; hereditarily nonparadoxical set
@article{CMJ_2000__50_4_a13,
     author = {Nowik, Andrzej},
     title = {Some topological properties of $\omega$-covering sets},
     journal = {Czechoslovak Mathematical Journal},
     pages = {865--877},
     publisher = {mathdoc},
     volume = {50},
     number = {4},
     year = {2000},
     mrnumber = {1792976},
     zbl = {1079.03547},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2000__50_4_a13/}
}
TY  - JOUR
AU  - Nowik, Andrzej
TI  - Some topological properties of $\omega$-covering sets
JO  - Czechoslovak Mathematical Journal
PY  - 2000
SP  - 865
EP  - 877
VL  - 50
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2000__50_4_a13/
LA  - en
ID  - CMJ_2000__50_4_a13
ER  - 
%0 Journal Article
%A Nowik, Andrzej
%T Some topological properties of $\omega$-covering sets
%J Czechoslovak Mathematical Journal
%D 2000
%P 865-877
%V 50
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2000__50_4_a13/
%G en
%F CMJ_2000__50_4_a13
Nowik, Andrzej. Some topological properties of $\omega$-covering sets. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 4, pp. 865-877. http://geodesic.mathdoc.fr/item/CMJ_2000__50_4_a13/