Transformations $z(t)=L(t)y(\varphi(t))$ of ordinary differential equations
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 3, pp. 519-529.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The paper describes the general form of an ordinary differential equation of an order $n+1$ $(n\ge 1)$ which allows a nontrivial global transformation consisting of the change of the independent variable and of a nonvanishing factor. A result given by J. Aczél is generalized. A functional equation of the form \[ f\biggl (s, w_{00}v_0, \ldots , \sum _{j=0}^n w_{n j}v_j\biggr )=\sum _{j=0}^n w_{n+1 j}v_j + w_{n+1 n+1}f(x,v, v_1, \ldots , v_n), \] where $w_{n+1 0}=h(s, x, x_1, u, u_1, \ldots , u_n)$, $ w_{n+1 1}=g(s, x, x_1, \ldots , x_n, u, u_1, \ldots , u_n)$ and $w_{i j}=a_{i j}(x_1, \ldots , x_{i-j+1}, u, u_1, \ldots , u_{i-j})$ for the given functions $a_{i j}$ is solved on $\mathbb R$, $ u\ne 0.$
Classification : 34A25, 34A30, 34A34, 39B22, 39B40
Keywords: ordinary differential equations; linear differential equations; transformations; functional equations
@article{CMJ_2000__50_3_a5,
     author = {Tryhuk, V\'aclav},
     title = {Transformations $z(t)=L(t)y(\varphi(t))$ of ordinary differential equations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {519--529},
     publisher = {mathdoc},
     volume = {50},
     number = {3},
     year = {2000},
     mrnumber = {1777473},
     zbl = {1079.34506},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2000__50_3_a5/}
}
TY  - JOUR
AU  - Tryhuk, Václav
TI  - Transformations $z(t)=L(t)y(\varphi(t))$ of ordinary differential equations
JO  - Czechoslovak Mathematical Journal
PY  - 2000
SP  - 519
EP  - 529
VL  - 50
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2000__50_3_a5/
LA  - en
ID  - CMJ_2000__50_3_a5
ER  - 
%0 Journal Article
%A Tryhuk, Václav
%T Transformations $z(t)=L(t)y(\varphi(t))$ of ordinary differential equations
%J Czechoslovak Mathematical Journal
%D 2000
%P 519-529
%V 50
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2000__50_3_a5/
%G en
%F CMJ_2000__50_3_a5
Tryhuk, Václav. Transformations $z(t)=L(t)y(\varphi(t))$ of ordinary differential equations. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 3, pp. 519-529. http://geodesic.mathdoc.fr/item/CMJ_2000__50_3_a5/