Transformations $z(t)=L(t)y(\varphi(t))$ of ordinary differential equations
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 3, pp. 519-529
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The paper describes the general form of an ordinary differential equation of an order $n+1$ $(n\ge 1)$ which allows a nontrivial global transformation consisting of the change of the independent variable and of a nonvanishing factor. A result given by J. Aczél is generalized. A functional equation of the form \[ f\biggl (s, w_{00}v_0, \ldots , \sum _{j=0}^n w_{n j}v_j\biggr )=\sum _{j=0}^n w_{n+1 j}v_j + w_{n+1 n+1}f(x,v, v_1, \ldots , v_n), \] where $w_{n+1 0}=h(s, x, x_1, u, u_1, \ldots , u_n)$, $ w_{n+1 1}=g(s, x, x_1, \ldots , x_n, u, u_1, \ldots , u_n)$ and $w_{i j}=a_{i j}(x_1, \ldots , x_{i-j+1}, u, u_1, \ldots , u_{i-j})$ for the given functions $a_{i j}$ is solved on $\mathbb R$, $ u\ne 0.$
Classification :
34A25, 34A30, 34A34, 39B22, 39B40
Keywords: ordinary differential equations; linear differential equations; transformations; functional equations
Keywords: ordinary differential equations; linear differential equations; transformations; functional equations
@article{CMJ_2000__50_3_a5,
author = {Tryhuk, V\'aclav},
title = {Transformations $z(t)=L(t)y(\varphi(t))$ of ordinary differential equations},
journal = {Czechoslovak Mathematical Journal},
pages = {519--529},
publisher = {mathdoc},
volume = {50},
number = {3},
year = {2000},
mrnumber = {1777473},
zbl = {1079.34506},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2000__50_3_a5/}
}
Tryhuk, Václav. Transformations $z(t)=L(t)y(\varphi(t))$ of ordinary differential equations. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 3, pp. 519-529. http://geodesic.mathdoc.fr/item/CMJ_2000__50_3_a5/