On global transformations of ordinary differential equations of the second order
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 3, pp. 499-508
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The paper describes the general form of an ordinary differential equation of the second order which allows a nontrivial global transformation consisting of the change of the independent variable and of a nonvanishing factor. A result given by J. Aczél is generalized. A functional equation of the form \[ f(t,vy,wy+uvz)=f(x,y,z)u^{2}v+g(t,x,u,v,w)vz+h(t,x,u,v,w)y+2uwz \] is solved on $\mathbb R$ for $y\ne 0$, $v\ne 0.$
Classification :
34-02, 34A25, 34A30, 34A34, 34C20, 39-02, 39B22, 39B40
Keywords: ordinary differential equations; linear differential equations; global transformations; functional equations
Keywords: ordinary differential equations; linear differential equations; global transformations; functional equations
@article{CMJ_2000__50_3_a3,
author = {Tryhuk, V\'aclav},
title = {On global transformations of ordinary differential equations of the second order},
journal = {Czechoslovak Mathematical Journal},
pages = {499--508},
publisher = {mathdoc},
volume = {50},
number = {3},
year = {2000},
mrnumber = {1777471},
zbl = {1079.34502},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2000__50_3_a3/}
}
TY - JOUR AU - Tryhuk, Václav TI - On global transformations of ordinary differential equations of the second order JO - Czechoslovak Mathematical Journal PY - 2000 SP - 499 EP - 508 VL - 50 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_2000__50_3_a3/ LA - en ID - CMJ_2000__50_3_a3 ER -
Tryhuk, Václav. On global transformations of ordinary differential equations of the second order. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 3, pp. 499-508. http://geodesic.mathdoc.fr/item/CMJ_2000__50_3_a3/