On global transformations of ordinary differential equations of the second order
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 3, pp. 499-508

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The paper describes the general form of an ordinary differential equation of the second order which allows a nontrivial global transformation consisting of the change of the independent variable and of a nonvanishing factor. A result given by J. Aczél is generalized. A functional equation of the form \[ f(t,vy,wy+uvz)=f(x,y,z)u^{2}v+g(t,x,u,v,w)vz+h(t,x,u,v,w)y+2uwz \] is solved on $\mathbb R$ for $y\ne 0$, $v\ne 0.$
Classification : 34-02, 34A25, 34A30, 34A34, 34C20, 39-02, 39B22, 39B40
Keywords: ordinary differential equations; linear differential equations; global transformations; functional equations
@article{CMJ_2000__50_3_a3,
     author = {Tryhuk, V\'aclav},
     title = {On global transformations of ordinary differential equations of the second order},
     journal = {Czechoslovak Mathematical Journal},
     pages = {499--508},
     publisher = {mathdoc},
     volume = {50},
     number = {3},
     year = {2000},
     mrnumber = {1777471},
     zbl = {1079.34502},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2000__50_3_a3/}
}
TY  - JOUR
AU  - Tryhuk, Václav
TI  - On global transformations of ordinary differential equations of the second order
JO  - Czechoslovak Mathematical Journal
PY  - 2000
SP  - 499
EP  - 508
VL  - 50
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2000__50_3_a3/
LA  - en
ID  - CMJ_2000__50_3_a3
ER  - 
%0 Journal Article
%A Tryhuk, Václav
%T On global transformations of ordinary differential equations of the second order
%J Czechoslovak Mathematical Journal
%D 2000
%P 499-508
%V 50
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2000__50_3_a3/
%G en
%F CMJ_2000__50_3_a3
Tryhuk, Václav. On global transformations of ordinary differential equations of the second order. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 3, pp. 499-508. http://geodesic.mathdoc.fr/item/CMJ_2000__50_3_a3/