On global transformations of ordinary differential equations of the second order
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 3, pp. 499-508.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The paper describes the general form of an ordinary differential equation of the second order which allows a nontrivial global transformation consisting of the change of the independent variable and of a nonvanishing factor. A result given by J. Aczél is generalized. A functional equation of the form \[ f(t,vy,wy+uvz)=f(x,y,z)u^{2}v+g(t,x,u,v,w)vz+h(t,x,u,v,w)y+2uwz \] is solved on $\mathbb R$ for $y\ne 0$, $v\ne 0.$
Classification : 34-02, 34A25, 34A30, 34A34, 34C20, 39-02, 39B22, 39B40
Keywords: ordinary differential equations; linear differential equations; global transformations; functional equations
@article{CMJ_2000__50_3_a3,
     author = {Tryhuk, V\'aclav},
     title = {On global transformations of ordinary differential equations of the second order},
     journal = {Czechoslovak Mathematical Journal},
     pages = {499--508},
     publisher = {mathdoc},
     volume = {50},
     number = {3},
     year = {2000},
     mrnumber = {1777471},
     zbl = {1079.34502},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2000__50_3_a3/}
}
TY  - JOUR
AU  - Tryhuk, Václav
TI  - On global transformations of ordinary differential equations of the second order
JO  - Czechoslovak Mathematical Journal
PY  - 2000
SP  - 499
EP  - 508
VL  - 50
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2000__50_3_a3/
LA  - en
ID  - CMJ_2000__50_3_a3
ER  - 
%0 Journal Article
%A Tryhuk, Václav
%T On global transformations of ordinary differential equations of the second order
%J Czechoslovak Mathematical Journal
%D 2000
%P 499-508
%V 50
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2000__50_3_a3/
%G en
%F CMJ_2000__50_3_a3
Tryhuk, Václav. On global transformations of ordinary differential equations of the second order. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 3, pp. 499-508. http://geodesic.mathdoc.fr/item/CMJ_2000__50_3_a3/