On nonoscillation of canonical or noncanonical disconjugate functional equations
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 3, pp. 627-639
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Qualitative comparison of the nonoscillatory behavior of the equations \[ L_ny(t) + H(t,y(t)) = 0 \] and \[ L_ny(t) + H(t,y(g(t))) = 0 \] is sought by way of finding different nonoscillation criteria for the above equations. $L_n$ is a disconjugate operator of the form \[ L_n = \frac{1}{p_n(t)} \frac{\mathrm{d}{}}{\mathrm{d}t} \frac{1}{p_{n-1}(t)} \frac{\mathrm{d}{}}{\mathrm{d}t} \ldots \frac{\mathrm{d}{}}{\mathrm{d}t} \frac{\cdot }{p_0(t)}. \] Both canonical and noncanonical forms of $L_n$ have been studied.
Classification :
34K11, 34K15, 34K25, 35J30, 35R10
Keywords: canonical; noncanonical; oscillatory; nonoscillatory; principal system
Keywords: canonical; noncanonical; oscillatory; nonoscillatory; principal system
@article{CMJ_2000__50_3_a14,
author = {Singh, Bhagat},
title = {On nonoscillation of canonical or noncanonical disconjugate functional equations},
journal = {Czechoslovak Mathematical Journal},
pages = {627--639},
publisher = {mathdoc},
volume = {50},
number = {3},
year = {2000},
mrnumber = {1777483},
zbl = {1079.34545},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2000__50_3_a14/}
}
TY - JOUR AU - Singh, Bhagat TI - On nonoscillation of canonical or noncanonical disconjugate functional equations JO - Czechoslovak Mathematical Journal PY - 2000 SP - 627 EP - 639 VL - 50 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_2000__50_3_a14/ LA - en ID - CMJ_2000__50_3_a14 ER -
Singh, Bhagat. On nonoscillation of canonical or noncanonical disconjugate functional equations. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 3, pp. 627-639. http://geodesic.mathdoc.fr/item/CMJ_2000__50_3_a14/