On a generalization of a Greguš fixed point theorem
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 3, pp. 449-458
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $C$ be a closed convex subset of a complete convex metric space $X$. In this paper a class of selfmappings on $C$, which satisfy the nonexpansive type condition $(2)$ below, is introduced and investigated. The main result is that such mappings have a unique fixed point.
Classification :
47H10, 54H25
Keywords: convex metric space; nonexpansive type mapping; fixed point
Keywords: convex metric space; nonexpansive type mapping; fixed point
@article{CMJ_2000__50_3_a0,
author = {\'Ciri\'c, Ljubomir},
title = {On a generalization of a {Gregu\v{s}} fixed point theorem},
journal = {Czechoslovak Mathematical Journal},
pages = {449--458},
publisher = {mathdoc},
volume = {50},
number = {3},
year = {2000},
mrnumber = {1777468},
zbl = {1079.47509},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2000__50_3_a0/}
}
Ćirić, Ljubomir. On a generalization of a Greguš fixed point theorem. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 3, pp. 449-458. http://geodesic.mathdoc.fr/item/CMJ_2000__50_3_a0/