Inequalities involving independence domination, $f$-domination, connected and total $f$-domination numbers
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 2, pp. 321-330
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $f$ be an integer-valued function defined on the vertex set $V(G)$ of a graph $G$. A subset $D$ of $V(G)$ is an $f$-dominating set if each vertex $x$ outside $D$ is adjacent to at least $f(x)$ vertices in $D$. The minimum number of vertices in an $f$-dominating set is defined to be the $f$-domination number, denoted by $\gamma _{f}(G)$. In a similar way one can define the connected and total $f$-domination numbers $\gamma _{c, f}(G)$ and $\gamma _{t, f}(G)$. If $f(x) = 1$ for all vertices $x$, then these are the ordinary domination number, connected domination number and total domination number of $G$, respectively. In this paper we prove some inequalities involving $\gamma _{f}(G), \gamma _{c, f}(G), \gamma _{t, f}(G)$ and the independence domination number $i(G)$. In particular, several known results are generalized.
Classification :
05C69, 05C90, 05C99
Keywords: domination number; independence domination number; $f$-domination number; connected $f$-domination number; total $f$-domination number
Keywords: domination number; independence domination number; $f$-domination number; connected $f$-domination number; total $f$-domination number
@article{CMJ_2000__50_2_a6,
author = {Zhou, Sanming},
title = {Inequalities involving independence domination, $f$-domination, connected and total $f$-domination numbers},
journal = {Czechoslovak Mathematical Journal},
pages = {321--330},
publisher = {mathdoc},
volume = {50},
number = {2},
year = {2000},
mrnumber = {1761389},
zbl = {1045.05073},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2000__50_2_a6/}
}
TY - JOUR AU - Zhou, Sanming TI - Inequalities involving independence domination, $f$-domination, connected and total $f$-domination numbers JO - Czechoslovak Mathematical Journal PY - 2000 SP - 321 EP - 330 VL - 50 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_2000__50_2_a6/ LA - en ID - CMJ_2000__50_2_a6 ER -
%0 Journal Article %A Zhou, Sanming %T Inequalities involving independence domination, $f$-domination, connected and total $f$-domination numbers %J Czechoslovak Mathematical Journal %D 2000 %P 321-330 %V 50 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMJ_2000__50_2_a6/ %G en %F CMJ_2000__50_2_a6
Zhou, Sanming. Inequalities involving independence domination, $f$-domination, connected and total $f$-domination numbers. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 2, pp. 321-330. http://geodesic.mathdoc.fr/item/CMJ_2000__50_2_a6/