Inequalities involving independence domination, $f$-domination, connected and total $f$-domination numbers
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 2, pp. 321-330.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $f$ be an integer-valued function defined on the vertex set $V(G)$ of a graph $G$. A subset $D$ of $V(G)$ is an $f$-dominating set if each vertex $x$ outside $D$ is adjacent to at least $f(x)$ vertices in $D$. The minimum number of vertices in an $f$-dominating set is defined to be the $f$-domination number, denoted by $\gamma _{f}(G)$. In a similar way one can define the connected and total $f$-domination numbers $\gamma _{c, f}(G)$ and $\gamma _{t, f}(G)$. If $f(x) = 1$ for all vertices $x$, then these are the ordinary domination number, connected domination number and total domination number of $G$, respectively. In this paper we prove some inequalities involving $\gamma _{f}(G), \gamma _{c, f}(G), \gamma _{t, f}(G)$ and the independence domination number $i(G)$. In particular, several known results are generalized.
Classification : 05C69, 05C90, 05C99
Keywords: domination number; independence domination number; $f$-domination number; connected $f$-domination number; total $f$-domination number
@article{CMJ_2000__50_2_a6,
     author = {Zhou, Sanming},
     title = {Inequalities involving independence domination, $f$-domination, connected and total $f$-domination numbers},
     journal = {Czechoslovak Mathematical Journal},
     pages = {321--330},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2000},
     mrnumber = {1761389},
     zbl = {1045.05073},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2000__50_2_a6/}
}
TY  - JOUR
AU  - Zhou, Sanming
TI  - Inequalities involving independence domination, $f$-domination, connected and total $f$-domination numbers
JO  - Czechoslovak Mathematical Journal
PY  - 2000
SP  - 321
EP  - 330
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2000__50_2_a6/
LA  - en
ID  - CMJ_2000__50_2_a6
ER  - 
%0 Journal Article
%A Zhou, Sanming
%T Inequalities involving independence domination, $f$-domination, connected and total $f$-domination numbers
%J Czechoslovak Mathematical Journal
%D 2000
%P 321-330
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2000__50_2_a6/
%G en
%F CMJ_2000__50_2_a6
Zhou, Sanming. Inequalities involving independence domination, $f$-domination, connected and total $f$-domination numbers. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 2, pp. 321-330. http://geodesic.mathdoc.fr/item/CMJ_2000__50_2_a6/