Some remarks on the product of two $C_\alpha$-compact subsets
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 2, pp. 249-264.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For a cardinal $\alpha $, we say that a subset $B$ of a space $X$ is $C_{\alpha }$-compact in $X$ if for every continuous function $f\: X \rightarrow \mathbb R^{\alpha }$, $f[B]$ is a compact subset of $\mathbb R^{\alpha }$. If $B$ is a $C$-compact subset of a space $X$, then $\rho (B,X)$ denotes the degree of $C_{\alpha }$-compactness of $B$ in $X$. A space $X$ is called $\alpha $-pseudocompact if $X$ is $C_{\alpha }$-compact into itself. For each cardinal $\alpha $, we give an example of an $\alpha $-pseudocompact space $X$ such that $X \times X$ is not pseudocompact: this answers a question posed by T. Retta in “Some cardinal generalizations of pseudocompactness” Czechoslovak Math. J. 43 (1993), 385–390. The boundedness of the product of two bounded subsets is studied in some particular cases. A version of the classical Glicksberg’s Theorem on the pseudocompactness of the product of two spaces is given in the context of boundedness. This theorem is applied to several particular cases.
Classification : 54B10, 54C50, 54D30, 54D35
Keywords: bounded subset; $C_\alpha$-compact; $\alpha$-pseudocompact; degree of $C_\alpha$-pseudocompactness; $\alpha_r$-space
@article{CMJ_2000__50_2_a2,
     author = {Garc{\'\i}a-Ferreira, S. and Sanchis, Manuel and Watson, S.},
     title = {Some remarks on the product of two $C_\alpha$-compact subsets},
     journal = {Czechoslovak Mathematical Journal},
     pages = {249--264},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2000},
     mrnumber = {1761385},
     zbl = {1050.54016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2000__50_2_a2/}
}
TY  - JOUR
AU  - García-Ferreira, S.
AU  - Sanchis, Manuel
AU  - Watson, S.
TI  - Some remarks on the product of two $C_\alpha$-compact subsets
JO  - Czechoslovak Mathematical Journal
PY  - 2000
SP  - 249
EP  - 264
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2000__50_2_a2/
LA  - en
ID  - CMJ_2000__50_2_a2
ER  - 
%0 Journal Article
%A García-Ferreira, S.
%A Sanchis, Manuel
%A Watson, S.
%T Some remarks on the product of two $C_\alpha$-compact subsets
%J Czechoslovak Mathematical Journal
%D 2000
%P 249-264
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2000__50_2_a2/
%G en
%F CMJ_2000__50_2_a2
García-Ferreira, S.; Sanchis, Manuel; Watson, S. Some remarks on the product of two $C_\alpha$-compact subsets. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 2, pp. 249-264. http://geodesic.mathdoc.fr/item/CMJ_2000__50_2_a2/