Random fixed point theorems for a certain class of mappings in Banach spaces
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 2, pp. 379-396.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $(\Omega,\Sigma)$ be a measurable space and $C$ a nonempty bounded closed convex separable subset of $p$-uniformly convex Banach space $E$ for some $p > 1$. We prove random fixed point theorems for a class of mappings $T\: \Omega \times C \rightarrow C$ satisfying: for each $x, y \in C$, $\omega \in \Omega $ and integer $n \ge 1$, \[\Vert T^n(\omega , x) - T^n(\omega , y) \Vert \le a(\omega )\cdot \Vert x - y \Vert + b(\omega )\lbrace \Vert x - T^n(\omega ,x) \Vert + \Vert y - T^n(\omega ,y) \Vert \rbrace + c(\omega )\lbrace \Vert x - T^n(\omega ,y) \Vert + \Vert y - T^n(\omega ,x) \Vert \rbrace , \] where $a,b,c\: \Omega \rightarrow [0, \infty )$ are functions satisfying certain conditions and $T^n(\omega ,x)$ is the value at $x$ of the $n$-th iterate of the mapping $T(\omega ,\cdot )$. Further we establish for these mappings some random fixed point theorems in a Hilbert space, in $L^p$ spaces, in Hardy spaces $H^p$ and in Sobolev spaces $H^{k,p} $ for $1 p \infty $ and $k \ge 0$. As a consequence of our main result, we also extend the results of Xu [43] and randomize the corresponding deterministic ones of Casini and Maluta [5], Goebel and Kirk [13], Tan and Xu [37], and Xu [39, 41].
Classification : 47H09, 47H10, 47H40, 60H25
Keywords: $p$-uniformly convex Banach space; normal structure; asymptotic center; random fixed points; generalized random uniformly Lipschitzian mapping
@article{CMJ_2000__50_2_a12,
     author = {Jung, Jong Soo and Cho, Yeol Je and Kang, Shin Min and Lee, Byung Soo and Thakur, Balwant Singh},
     title = {Random fixed point theorems for a certain class of mappings in {Banach} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {379--396},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2000},
     mrnumber = {1761395},
     zbl = {1048.47043},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2000__50_2_a12/}
}
TY  - JOUR
AU  - Jung, Jong Soo
AU  - Cho, Yeol Je
AU  - Kang, Shin Min
AU  - Lee, Byung Soo
AU  - Thakur, Balwant Singh
TI  - Random fixed point theorems for a certain class of mappings in Banach spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2000
SP  - 379
EP  - 396
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2000__50_2_a12/
LA  - en
ID  - CMJ_2000__50_2_a12
ER  - 
%0 Journal Article
%A Jung, Jong Soo
%A Cho, Yeol Je
%A Kang, Shin Min
%A Lee, Byung Soo
%A Thakur, Balwant Singh
%T Random fixed point theorems for a certain class of mappings in Banach spaces
%J Czechoslovak Mathematical Journal
%D 2000
%P 379-396
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2000__50_2_a12/
%G en
%F CMJ_2000__50_2_a12
Jung, Jong Soo; Cho, Yeol Je; Kang, Shin Min; Lee, Byung Soo; Thakur, Balwant Singh. Random fixed point theorems for a certain class of mappings in Banach spaces. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 2, pp. 379-396. http://geodesic.mathdoc.fr/item/CMJ_2000__50_2_a12/