Random fixed point theorems for a certain class of mappings in Banach spaces
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 2, pp. 379-396
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $(\Omega,\Sigma)$ be a measurable space and $C$ a nonempty bounded closed convex separable subset of $p$-uniformly convex Banach space $E$ for some $p > 1$. We prove random fixed point theorems for a class of mappings $T\: \Omega \times C \rightarrow C$ satisfying: for each $x, y \in C$, $\omega \in \Omega $ and integer $n \ge 1$, \[\Vert T^n(\omega , x) - T^n(\omega , y) \Vert \le a(\omega )\cdot \Vert x - y \Vert + b(\omega )\lbrace \Vert x - T^n(\omega ,x) \Vert + \Vert y - T^n(\omega ,y) \Vert \rbrace + c(\omega )\lbrace \Vert x - T^n(\omega ,y) \Vert + \Vert y - T^n(\omega ,x) \Vert \rbrace , \] where $a,b,c\: \Omega \rightarrow [0, \infty )$ are functions satisfying certain conditions and $T^n(\omega ,x)$ is the value at $x$ of the $n$-th iterate of the mapping $T(\omega ,\cdot )$. Further we establish for these mappings some random fixed point theorems in a Hilbert space, in $L^p$ spaces, in Hardy spaces $H^p$ and in Sobolev spaces $H^{k,p} $ for $1 p \infty $ and $k \ge 0$. As a consequence of our main result, we also extend the results of Xu [43] and randomize the corresponding deterministic ones of Casini and Maluta [5], Goebel and Kirk [13], Tan and Xu [37], and Xu [39, 41].
Classification :
47H09, 47H10, 47H40, 60H25
Keywords: $p$-uniformly convex Banach space; normal structure; asymptotic center; random fixed points; generalized random uniformly Lipschitzian mapping
Keywords: $p$-uniformly convex Banach space; normal structure; asymptotic center; random fixed points; generalized random uniformly Lipschitzian mapping
@article{CMJ_2000__50_2_a12,
author = {Jung, Jong Soo and Cho, Yeol Je and Kang, Shin Min and Lee, Byung Soo and Thakur, Balwant Singh},
title = {Random fixed point theorems for a certain class of mappings in {Banach} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {379--396},
publisher = {mathdoc},
volume = {50},
number = {2},
year = {2000},
mrnumber = {1761395},
zbl = {1048.47043},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2000__50_2_a12/}
}
TY - JOUR AU - Jung, Jong Soo AU - Cho, Yeol Je AU - Kang, Shin Min AU - Lee, Byung Soo AU - Thakur, Balwant Singh TI - Random fixed point theorems for a certain class of mappings in Banach spaces JO - Czechoslovak Mathematical Journal PY - 2000 SP - 379 EP - 396 VL - 50 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_2000__50_2_a12/ LA - en ID - CMJ_2000__50_2_a12 ER -
%0 Journal Article %A Jung, Jong Soo %A Cho, Yeol Je %A Kang, Shin Min %A Lee, Byung Soo %A Thakur, Balwant Singh %T Random fixed point theorems for a certain class of mappings in Banach spaces %J Czechoslovak Mathematical Journal %D 2000 %P 379-396 %V 50 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMJ_2000__50_2_a12/ %G en %F CMJ_2000__50_2_a12
Jung, Jong Soo; Cho, Yeol Je; Kang, Shin Min; Lee, Byung Soo; Thakur, Balwant Singh. Random fixed point theorems for a certain class of mappings in Banach spaces. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 2, pp. 379-396. http://geodesic.mathdoc.fr/item/CMJ_2000__50_2_a12/