Almost Butler groups
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 2, pp. 367-378.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Generalizing the notion of the almost free group we introduce almost Butler groups. An almost $B_2$-group $G$ of singular cardinality is a $B_2$-group. Since almost $B_2$-groups have preseparative chains, the same result in regular cardinality holds under the additional hypothesis that $G$ is a $B_1$-group. Some other results characterizing $B_2$-groups within the classes of almost $B_1$-groups and almost $B_2$-groups are obtained. A theorem of stating that a group $G$ of weakly compact cardinality $\lambda $ having a $\lambda $-filtration consisting of pure $B_2$-subgroup is a $B_2$-group appears as a corollary.
Classification : 20K20, 20K27
@article{CMJ_2000__50_2_a11,
     author = {Bican, Ladislav},
     title = {Almost {Butler} groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {367--378},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2000},
     mrnumber = {1761394},
     zbl = {1051.20023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2000__50_2_a11/}
}
TY  - JOUR
AU  - Bican, Ladislav
TI  - Almost Butler groups
JO  - Czechoslovak Mathematical Journal
PY  - 2000
SP  - 367
EP  - 378
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2000__50_2_a11/
LA  - en
ID  - CMJ_2000__50_2_a11
ER  - 
%0 Journal Article
%A Bican, Ladislav
%T Almost Butler groups
%J Czechoslovak Mathematical Journal
%D 2000
%P 367-378
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2000__50_2_a11/
%G en
%F CMJ_2000__50_2_a11
Bican, Ladislav. Almost Butler groups. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 2, pp. 367-378. http://geodesic.mathdoc.fr/item/CMJ_2000__50_2_a11/