Examples of bifurcation of periodic solutions to variational inequalities in $\mathbb R^\kappa $
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 2, pp. 225-244
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A bifurcation problem for variational inequalities \[ U(t) \in K, (\dot{U}(t)-B_\lambda U(t) - G(\lambda ,U(t)),\ Z - U(t))\ge 0\ \text{for} \text{all} \ Z\in K, \text{a.a.} \ t \ge 0 \] is studied, where $K$ is a closed convex cone in $\mathbb{R}^\kappa $, $\kappa \ge 3$, $B_\lambda $ is a $\kappa \times \kappa $ matrix, $G$ is a small perturbation, $\lambda $ a real parameter. The main goal of the paper is to simplify the assumptions of the abstract results concerning the existence of a bifurcation of periodic solutions developed in the previous paper and to give examples in more than three dimensional case.
Classification :
34A25, 34A40, 34C23, 37G15, 47J20, 49J40
Keywords: bifurcation; periodic solutions; variational inequality; differential inequality; finite dimensional space
Keywords: bifurcation; periodic solutions; variational inequality; differential inequality; finite dimensional space
@article{CMJ_2000__50_2_a0,
author = {Ku\v{c}era, Milan},
title = {Examples of bifurcation of periodic solutions to variational inequalities in $\mathbb R^\kappa $},
journal = {Czechoslovak Mathematical Journal},
pages = {225--244},
publisher = {mathdoc},
volume = {50},
number = {2},
year = {2000},
mrnumber = {1761383},
zbl = {1047.37034},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2000__50_2_a0/}
}
TY - JOUR AU - Kučera, Milan TI - Examples of bifurcation of periodic solutions to variational inequalities in $\mathbb R^\kappa $ JO - Czechoslovak Mathematical Journal PY - 2000 SP - 225 EP - 244 VL - 50 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_2000__50_2_a0/ LA - en ID - CMJ_2000__50_2_a0 ER -
Kučera, Milan. Examples of bifurcation of periodic solutions to variational inequalities in $\mathbb R^\kappa $. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 2, pp. 225-244. http://geodesic.mathdoc.fr/item/CMJ_2000__50_2_a0/