The space of compact operators contains $c_0$ when a noncompact operator is suitably factorized
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 1, pp. 75-82.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Classification : 46A32, 46B03, 46B25, 46B28, 47L05
Keywords: spaces of linear operators; copies of $c_0$; approximation properties
@article{CMJ_2000__50_1_a9,
     author = {Emmanuele, G. and John, K.},
     title = {The space of compact operators contains $c_0$ when a noncompact operator is suitably factorized},
     journal = {Czechoslovak Mathematical Journal},
     pages = {75--82},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2000},
     mrnumber = {1745461},
     zbl = {1040.46019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2000__50_1_a9/}
}
TY  - JOUR
AU  - Emmanuele, G.
AU  - John, K.
TI  - The space of compact operators contains $c_0$ when a noncompact operator is suitably factorized
JO  - Czechoslovak Mathematical Journal
PY  - 2000
SP  - 75
EP  - 82
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2000__50_1_a9/
LA  - en
ID  - CMJ_2000__50_1_a9
ER  - 
%0 Journal Article
%A Emmanuele, G.
%A John, K.
%T The space of compact operators contains $c_0$ when a noncompact operator is suitably factorized
%J Czechoslovak Mathematical Journal
%D 2000
%P 75-82
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2000__50_1_a9/
%G en
%F CMJ_2000__50_1_a9
Emmanuele, G.; John, K. The space of compact operators contains $c_0$ when a noncompact operator is suitably factorized. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 1, pp. 75-82. http://geodesic.mathdoc.fr/item/CMJ_2000__50_1_a9/