A new efficient presentation for $PSL(2,5)$ and the structure of the groups $G(3,m,n)$
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 1, pp. 67-74
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
$G(3,m,n)$ is the group presented by $\langle a,b\mid a^5=(ab)^2=b^{m+3}a^{-n}b^ma^{-n}=1\rangle $. In this paper, we study the structure of $G(3,m,n)$. We also give a new efficient presentation for the Projective Special Linear group $PSL(2,5)$ and in particular we prove that $PSL(2,5)$ is isomorphic to $G(3,m,n)$ under certain conditions.
@article{CMJ_2000__50_1_a8,
author = {Vatansever, Bilal and Gill, David M. and Eren, Nuran},
title = {A new efficient presentation for $PSL(2,5)$ and the structure of the groups $G(3,m,n)$},
journal = {Czechoslovak Mathematical Journal},
pages = {67--74},
publisher = {mathdoc},
volume = {50},
number = {1},
year = {2000},
mrnumber = {1745460},
zbl = {1038.20021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2000__50_1_a8/}
}
TY - JOUR AU - Vatansever, Bilal AU - Gill, David M. AU - Eren, Nuran TI - A new efficient presentation for $PSL(2,5)$ and the structure of the groups $G(3,m,n)$ JO - Czechoslovak Mathematical Journal PY - 2000 SP - 67 EP - 74 VL - 50 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_2000__50_1_a8/ LA - en ID - CMJ_2000__50_1_a8 ER -
%0 Journal Article %A Vatansever, Bilal %A Gill, David M. %A Eren, Nuran %T A new efficient presentation for $PSL(2,5)$ and the structure of the groups $G(3,m,n)$ %J Czechoslovak Mathematical Journal %D 2000 %P 67-74 %V 50 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMJ_2000__50_1_a8/ %G en %F CMJ_2000__50_1_a8
Vatansever, Bilal; Gill, David M.; Eren, Nuran. A new efficient presentation for $PSL(2,5)$ and the structure of the groups $G(3,m,n)$. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 1, pp. 67-74. http://geodesic.mathdoc.fr/item/CMJ_2000__50_1_a8/