$M$-ideals of compact operators into $\ell_p$
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 1, pp. 51-57
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We show for $2\le p\infty $ and subspaces $X$ of quotients of $L_{p}$ with a $1$-unconditional finite-dimensional Schauder decomposition that $K(X,\ell _{p})$ is an $M$-ideal in $L(X,\ell _{p})$.
@article{CMJ_2000__50_1_a6,
author = {John, Kamil and Werner, Dirk},
title = {$M$-ideals of compact operators into $\ell_p$},
journal = {Czechoslovak Mathematical Journal},
pages = {51--57},
publisher = {mathdoc},
volume = {50},
number = {1},
year = {2000},
mrnumber = {1745458},
zbl = {1040.46020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2000__50_1_a6/}
}
John, Kamil; Werner, Dirk. $M$-ideals of compact operators into $\ell_p$. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 1, pp. 51-57. http://geodesic.mathdoc.fr/item/CMJ_2000__50_1_a6/