$M$-ideals of compact operators into $\ell_p$
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 1, pp. 51-57.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We show for $2\le p\infty $ and subspaces $X$ of quotients of $L_{p}$ with a $1$-unconditional finite-dimensional Schauder decomposition that $K(X,\ell _{p})$ is an $M$-ideal in $L(X,\ell _{p})$.
Classification : 46B28, 47B07, 47L05
@article{CMJ_2000__50_1_a6,
     author = {John, Kamil and Werner, Dirk},
     title = {$M$-ideals of compact operators into $\ell_p$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {51--57},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2000},
     mrnumber = {1745458},
     zbl = {1040.46020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2000__50_1_a6/}
}
TY  - JOUR
AU  - John, Kamil
AU  - Werner, Dirk
TI  - $M$-ideals of compact operators into $\ell_p$
JO  - Czechoslovak Mathematical Journal
PY  - 2000
SP  - 51
EP  - 57
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2000__50_1_a6/
LA  - en
ID  - CMJ_2000__50_1_a6
ER  - 
%0 Journal Article
%A John, Kamil
%A Werner, Dirk
%T $M$-ideals of compact operators into $\ell_p$
%J Czechoslovak Mathematical Journal
%D 2000
%P 51-57
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2000__50_1_a6/
%G en
%F CMJ_2000__50_1_a6
John, Kamil; Werner, Dirk. $M$-ideals of compact operators into $\ell_p$. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 1, pp. 51-57. http://geodesic.mathdoc.fr/item/CMJ_2000__50_1_a6/