The impact of unbounded swings of the forcing term on the asymptotic behavior of functional equations
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 1, pp. 15-24.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Necessary and sufficient conditions have been found to force all solutions of the equation \[ (r(t)y^{\prime }(t))^{(n-1)} + a(t)h(y(g(t))) = f(t), \] to behave in peculiar ways. These results are then extended to the elliptic equation \[ |x|^{p-1} \Delta y(|x|) + a(|x|)h(y(g(|x|))) = f(|x|) \] where $ \Delta $ is the Laplace operator and $p \ge 3$ is an integer.
Classification : 34K11, 34K25, 35B40, 35J60, 35R10
Keywords: oscillatory; nonoscillatory; exterior domain; elliptic; functional equation
@article{CMJ_2000__50_1_a2,
     author = {Singh, Bhagat},
     title = {The impact of unbounded swings of the forcing term on the asymptotic behavior of functional equations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {15--24},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2000},
     mrnumber = {1745454},
     zbl = {1045.34051},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2000__50_1_a2/}
}
TY  - JOUR
AU  - Singh, Bhagat
TI  - The impact of unbounded swings of the forcing term on the asymptotic behavior of functional equations
JO  - Czechoslovak Mathematical Journal
PY  - 2000
SP  - 15
EP  - 24
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2000__50_1_a2/
LA  - en
ID  - CMJ_2000__50_1_a2
ER  - 
%0 Journal Article
%A Singh, Bhagat
%T The impact of unbounded swings of the forcing term on the asymptotic behavior of functional equations
%J Czechoslovak Mathematical Journal
%D 2000
%P 15-24
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2000__50_1_a2/
%G en
%F CMJ_2000__50_1_a2
Singh, Bhagat. The impact of unbounded swings of the forcing term on the asymptotic behavior of functional equations. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 1, pp. 15-24. http://geodesic.mathdoc.fr/item/CMJ_2000__50_1_a2/