On Ozeki’s inequality for power sums
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 1, pp. 99-102
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $p\in (0,1)$ be a real number and let $n\ge 2$ be an even integer. We determine the largest value $c_n(p)$ such that the inequality \[ \sum ^n_{i=1} |a_i|^p \ge c_n(p) \] holds for all real numbers $a_1,\ldots ,a_n$ which are pairwise distinct and satisfy $\min _{i\ne j} |a_i-a_j| = 1$. Our theorem completes results of Ozeki, Mitrinović-Kalajdžić, and Russell, who found the optimal value $c_n(p)$ in the case $p>0$ and $n$ odd, and in the case $p\ge 1$ and $n$ even.
@article{CMJ_2000__50_1_a12,
author = {Alzer, Horst},
title = {On {Ozeki{\textquoteright}s} inequality for power sums},
journal = {Czechoslovak Mathematical Journal},
pages = {99--102},
publisher = {mathdoc},
volume = {50},
number = {1},
year = {2000},
mrnumber = {1745464},
zbl = {1036.26017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2000__50_1_a12/}
}
Alzer, Horst. On Ozeki’s inequality for power sums. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 1, pp. 99-102. http://geodesic.mathdoc.fr/item/CMJ_2000__50_1_a12/