On Ozeki’s inequality for power sums
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 1, pp. 99-102.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $p\in (0,1)$ be a real number and let $n\ge 2$ be an even integer. We determine the largest value $c_n(p)$ such that the inequality \[ \sum ^n_{i=1} |a_i|^p \ge c_n(p) \] holds for all real numbers $a_1,\ldots ,a_n$ which are pairwise distinct and satisfy $\min _{i\ne j} |a_i-a_j| = 1$. Our theorem completes results of Ozeki, Mitrinović-Kalajdžić, and Russell, who found the optimal value $c_n(p)$ in the case $p>0$ and $n$ odd, and in the case $p\ge 1$ and $n$ even.
Classification : 26D15
@article{CMJ_2000__50_1_a12,
     author = {Alzer, Horst},
     title = {On {Ozeki{\textquoteright}s} inequality for power sums},
     journal = {Czechoslovak Mathematical Journal},
     pages = {99--102},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2000},
     mrnumber = {1745464},
     zbl = {1036.26017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2000__50_1_a12/}
}
TY  - JOUR
AU  - Alzer, Horst
TI  - On Ozeki’s inequality for power sums
JO  - Czechoslovak Mathematical Journal
PY  - 2000
SP  - 99
EP  - 102
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2000__50_1_a12/
LA  - en
ID  - CMJ_2000__50_1_a12
ER  - 
%0 Journal Article
%A Alzer, Horst
%T On Ozeki’s inequality for power sums
%J Czechoslovak Mathematical Journal
%D 2000
%P 99-102
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2000__50_1_a12/
%G en
%F CMJ_2000__50_1_a12
Alzer, Horst. On Ozeki’s inequality for power sums. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 1, pp. 99-102. http://geodesic.mathdoc.fr/item/CMJ_2000__50_1_a12/