$\sigma$-interpolation lattice-ordered groups
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 1, pp. 1-2.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In [1], Jakubík showed that the class of $\sigma $-interpolation lattice-ordered groups forms a radical class, but left open the question of whether the class forms a torsion class. In this paper, we show that this class does indeed form a torsion class.
Classification : 06C15, 20F60
@article{CMJ_2000__50_1_a0,
     author = {Darnel, Michael R.},
     title = {$\sigma$-interpolation lattice-ordered groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1--2},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2000},
     mrnumber = {1745452},
     zbl = {1035.06004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2000__50_1_a0/}
}
TY  - JOUR
AU  - Darnel, Michael R.
TI  - $\sigma$-interpolation lattice-ordered groups
JO  - Czechoslovak Mathematical Journal
PY  - 2000
SP  - 1
EP  - 2
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2000__50_1_a0/
LA  - en
ID  - CMJ_2000__50_1_a0
ER  - 
%0 Journal Article
%A Darnel, Michael R.
%T $\sigma$-interpolation lattice-ordered groups
%J Czechoslovak Mathematical Journal
%D 2000
%P 1-2
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2000__50_1_a0/
%G en
%F CMJ_2000__50_1_a0
Darnel, Michael R. $\sigma$-interpolation lattice-ordered groups. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 1, pp. 1-2. http://geodesic.mathdoc.fr/item/CMJ_2000__50_1_a0/