On the mixed problem for hyperbolic partial differential-functional equations of the first order
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 4, pp. 791-809
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider the mixed problem for the hyperbolic partial differential-functional equation of the first order \[ D_xz(x,y) = f(x,y,z_{(x,y)}, D_yz(x,y)), \] where $z_{(x,y)} \: [-\tau ,0] \times [0,h] \rightarrow \mathbb{R}$ is a function defined by $z_{(x,y)}(t,s) = z(x+t, y+s)$, $(t,s) \in [-\tau ,0] \times [0,h]$. Using the method of bicharacteristics and the method of successive approximations for a certain integral-functional system we prove, under suitable assumptions, a theorem of the local existence of generalized solutions of this problem.
Classification :
35A30, 35D05, 35L60, 35R10
Keywords: partial differential-functional equations; mixed problem; generalized solutions; local existence; bicharacteristics; successive approximations
Keywords: partial differential-functional equations; mixed problem; generalized solutions; local existence; bicharacteristics; successive approximations
@article{CMJ_1999__49_4_a9,
author = {Cz{\l}api\'nski, Tomasz},
title = {On the mixed problem for hyperbolic partial differential-functional equations of the first order},
journal = {Czechoslovak Mathematical Journal},
pages = {791--809},
publisher = {mathdoc},
volume = {49},
number = {4},
year = {1999},
mrnumber = {1746704},
zbl = {1010.35021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1999__49_4_a9/}
}
TY - JOUR AU - Człapiński, Tomasz TI - On the mixed problem for hyperbolic partial differential-functional equations of the first order JO - Czechoslovak Mathematical Journal PY - 1999 SP - 791 EP - 809 VL - 49 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_1999__49_4_a9/ LA - en ID - CMJ_1999__49_4_a9 ER -
Człapiński, Tomasz. On the mixed problem for hyperbolic partial differential-functional equations of the first order. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 4, pp. 791-809. http://geodesic.mathdoc.fr/item/CMJ_1999__49_4_a9/