Exact asymptotic behavior of singular values of a class of integral operators
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 4, pp. 707-732.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We find an exact asymptotic formula for the singular values of the integral operator of the form $\int _{\Omega } T(x,y)k(x-y) \cdot \mathrm{d}y \: L^2 (\Omega )\rightarrow L^2(\Omega )$ ($\Omega \subset \mathbb{R}^m$, a Jordan measurable set) where $k(t) = k_0((t^2_1 + t^2_2 + \ldots t^2_m)^{\frac{m}{2}})$, $k_0 (x) = x^{\alpha -1} L(\tfrac{1}{x})$, $\tfrac{1}{2} - \tfrac{1}{2m} \alpha \tfrac{1}{2}$ and $L$ is slowly varying function with some additional properties. The formula is an explicit expression in terms of $L$ and $T$.
Classification : 47B10, 47G10
@article{CMJ_1999__49_4_a4,
     author = {Dostani\'c, Milutin},
     title = {Exact asymptotic behavior of singular values of a class of integral operators},
     journal = {Czechoslovak Mathematical Journal},
     pages = {707--732},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {1999},
     mrnumber = {1746699},
     zbl = {1008.47045},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1999__49_4_a4/}
}
TY  - JOUR
AU  - Dostanić, Milutin
TI  - Exact asymptotic behavior of singular values of a class of integral operators
JO  - Czechoslovak Mathematical Journal
PY  - 1999
SP  - 707
EP  - 732
VL  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_1999__49_4_a4/
LA  - en
ID  - CMJ_1999__49_4_a4
ER  - 
%0 Journal Article
%A Dostanić, Milutin
%T Exact asymptotic behavior of singular values of a class of integral operators
%J Czechoslovak Mathematical Journal
%D 1999
%P 707-732
%V 49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_1999__49_4_a4/
%G en
%F CMJ_1999__49_4_a4
Dostanić, Milutin. Exact asymptotic behavior of singular values of a class of integral operators. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 4, pp. 707-732. http://geodesic.mathdoc.fr/item/CMJ_1999__49_4_a4/