Exact asymptotic behavior of singular values of a class of integral operators
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 4, pp. 707-732

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We find an exact asymptotic formula for the singular values of the integral operator of the form $\int _{\Omega } T(x,y)k(x-y) \cdot \mathrm{d}y \: L^2 (\Omega )\rightarrow L^2(\Omega )$ ($\Omega \subset \mathbb{R}^m$, a Jordan measurable set) where $k(t) = k_0((t^2_1 + t^2_2 + \ldots t^2_m)^{\frac{m}{2}})$, $k_0 (x) = x^{\alpha -1} L(\tfrac{1}{x})$, $\tfrac{1}{2} - \tfrac{1}{2m} \alpha \tfrac{1}{2}$ and $L$ is slowly varying function with some additional properties. The formula is an explicit expression in terms of $L$ and $T$.
Classification : 47B10, 47G10
@article{CMJ_1999__49_4_a4,
     author = {Dostani\'c, Milutin},
     title = {Exact asymptotic behavior of singular values of a class of integral operators},
     journal = {Czechoslovak Mathematical Journal},
     pages = {707--732},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {1999},
     mrnumber = {1746699},
     zbl = {1008.47045},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1999__49_4_a4/}
}
TY  - JOUR
AU  - Dostanić, Milutin
TI  - Exact asymptotic behavior of singular values of a class of integral operators
JO  - Czechoslovak Mathematical Journal
PY  - 1999
SP  - 707
EP  - 732
VL  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_1999__49_4_a4/
LA  - en
ID  - CMJ_1999__49_4_a4
ER  - 
%0 Journal Article
%A Dostanić, Milutin
%T Exact asymptotic behavior of singular values of a class of integral operators
%J Czechoslovak Mathematical Journal
%D 1999
%P 707-732
%V 49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_1999__49_4_a4/
%G en
%F CMJ_1999__49_4_a4
Dostanić, Milutin. Exact asymptotic behavior of singular values of a class of integral operators. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 4, pp. 707-732. http://geodesic.mathdoc.fr/item/CMJ_1999__49_4_a4/