On $L^2_w$-quasi-derivatives for solutions of perturbed general quasi-differential equations
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 4, pp. 877-890.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This paper is concerned with square integrable quasi-derivatives for any solution of a general quasi-differential equation of $n$th order with complex coefficients $M[y] - \lambda wy = wf (t, y^{[0]}, \ldots ,y^{[n-1]})$, $t\in [a,b)$ provided that all $r$th quasi-derivatives of solutions of $M[y] - \lambda w y = 0$ and all solutions of its normal adjoint $M^+[z] - \bar{\lambda } w z = 0$ are in $L^2_w (a,b)$ and under suitable conditions on the function $f$.
Classification : 34A05, 34A25, 34B15, 34B25, 34C11, 34E10, 34E15, 34G10, 34M45, 47A55, 47E05
Keywords: quasi-differential operators; regular; singular; bounded and square integrable solutions
@article{CMJ_1999__49_4_a18,
     author = {Ibrahim, Sobhy El-sayed},
     title = {On $L^2_w$-quasi-derivatives for solutions of perturbed general quasi-differential equations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {877--890},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {1999},
     mrnumber = {1746713},
     zbl = {1015.34002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1999__49_4_a18/}
}
TY  - JOUR
AU  - Ibrahim, Sobhy El-sayed
TI  - On $L^2_w$-quasi-derivatives for solutions of perturbed general quasi-differential equations
JO  - Czechoslovak Mathematical Journal
PY  - 1999
SP  - 877
EP  - 890
VL  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_1999__49_4_a18/
LA  - en
ID  - CMJ_1999__49_4_a18
ER  - 
%0 Journal Article
%A Ibrahim, Sobhy El-sayed
%T On $L^2_w$-quasi-derivatives for solutions of perturbed general quasi-differential equations
%J Czechoslovak Mathematical Journal
%D 1999
%P 877-890
%V 49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_1999__49_4_a18/
%G en
%F CMJ_1999__49_4_a18
Ibrahim, Sobhy El-sayed. On $L^2_w$-quasi-derivatives for solutions of perturbed general quasi-differential equations. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 4, pp. 877-890. http://geodesic.mathdoc.fr/item/CMJ_1999__49_4_a18/