Locally symmetric immersions
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 3, pp. 491-506.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We use reflections with respect to submanifolds and related geometric results to develop, inspired by the work of Ferus and other authors, in a unified way a local theory of extrinsic symmetric immersions and submanifolds in a general analytic Riemannian manifold and in locally symmetric spaces. In particular we treat the case of real and complex space forms and study additional relations with holomorphic and symplectic reflections when the ambient space is almost Hermitian. The global case is also taken into consideration and several examples are given.
Classification : 53B25, 53C35, 53C40, 53C42
Keywords: reflections; (locally) symmetric immersions; extrinsic (locally) symmetric submanifolds; parallel immersions; (locally) symmetric spaces
@article{CMJ_1999__49_3_a3,
     author = {Gonz\'alez-D\'avila, J. C. and Vanhecke, L.},
     title = {Locally symmetric immersions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {491--506},
     publisher = {mathdoc},
     volume = {49},
     number = {3},
     year = {1999},
     mrnumber = {1708378},
     zbl = {1015.53014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1999__49_3_a3/}
}
TY  - JOUR
AU  - González-Dávila, J. C.
AU  - Vanhecke, L.
TI  - Locally symmetric immersions
JO  - Czechoslovak Mathematical Journal
PY  - 1999
SP  - 491
EP  - 506
VL  - 49
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_1999__49_3_a3/
LA  - en
ID  - CMJ_1999__49_3_a3
ER  - 
%0 Journal Article
%A González-Dávila, J. C.
%A Vanhecke, L.
%T Locally symmetric immersions
%J Czechoslovak Mathematical Journal
%D 1999
%P 491-506
%V 49
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_1999__49_3_a3/
%G en
%F CMJ_1999__49_3_a3
González-Dávila, J. C.; Vanhecke, L. Locally symmetric immersions. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 3, pp. 491-506. http://geodesic.mathdoc.fr/item/CMJ_1999__49_3_a3/